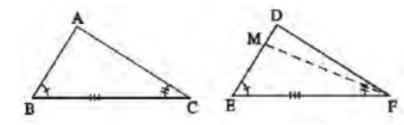
In any correspondence of two triangles, if one side and any two angles of one triangle are congruent to the corresponding side and angles of the other, then the triangles are congruent.

 $\text{(A.S.A.}\cong\text{A.S.A.}\text{)}$



Given:

In $\triangle ABC \leftrightarrow \triangle DEF$ $\angle B \cong \angle E, \ \overline{BC} \cong \overline{EF}, \angle C \cong \angle F.$

To prove:

 $\Delta ABC \cong \Delta DEF$

Construction

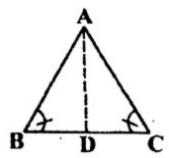
Suppose $\overline{AB} \neq \overline{DE}$, take a point M on DE such that $\overline{AB} \cong \overline{ME}$. Join M to F

Proof:

Statements	Reasons
In $\triangle ABC \leftrightarrow \triangle D'EF$	
$\overline{AB} \cong \overline{D^*E}$ (i)	Construction
$\overline{BC} \cong \overline{EF}$ (ii)	Given
	Given

$\angle B \cong \angle E \dots$ (iii)	S.A.S. postulate
$\therefore \Delta ABC \cong \Delta D^*EF$	(Corresponding angles of congruent
So, $\angle C \cong \angle D'FE$	triangles)
	Given
But, $\angle C \cong \angle DFE$	Both congruent to ∠C
∴ ∠DFE ≅ ∠D'FE	
This is possible only if D and	
D are the same points, and	Proved that D and D' are the same points
$D'E \cong DE$	Proved that D and D' are the same points
So, $\overline{AB} \cong \overline{DE}$ (iv)	
Thus from (ii), (iii) and (iv), we	S.A.S. postulate
Have	
$\Delta ABC \cong \Delta DEF$	

If two angles of a triangle are congruent, then the sides opposite to them are also congruent.



Given:

 $\ln \Delta ABC$,

 $\angle B \cong \angle C$

To prove:

 $\overline{AB} \cong \overline{AC}$

Construction:

Draw the bisector of $\angle A$, to meet BC at point D.

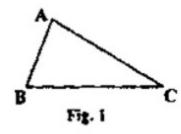
Proof:

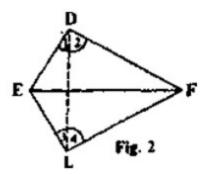
Statements	Reasons
In $\triangle ABD \leftrightarrow \triangle ACD$	
$\overline{AD} \cong \overline{AD}$	Common
$\angle B \cong \angle C$	Given
$\angle BAD \cong \angle CAD$	Construction
	S.A.A. ≅ S.A.A.

(Corresponding angles of congruent
triangles)

If in a given correspondence of two triangles, the three sides of one triangle are congruent to the corresponding three sides of the other triangle then the triangles are congruent.

Solution:





Given

In $\triangle ABC \leftrightarrow \triangle DEF$

 $\overline{AB}\cong \overline{DE}$, $\overline{BC}\cong \overline{EF}$ and $\overline{CA}\cong \overline{FD}$

To Prove

 $\triangle ABC \cong \triangle DEF$

Construction

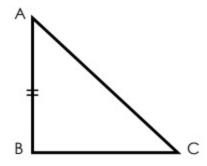
Suppose that in ΔDEF the side \overline{EF} is not smaller than any of the remaining two sides. On \overline{EF} construct a ΔLEF in which, $\angle FEL \cong \angle B$ and $\overline{LE} \cong \overline{AB}$. Join D and M. As shown in the above figures we label some of the angles as 1, 2, 3 and 4.

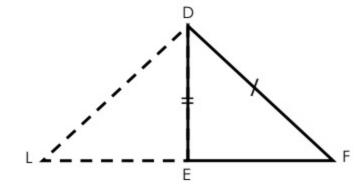
Proof

Statements	Reasons
	000.000

In $\triangle ABC \leftrightarrow \triangle LEF$	
$\overline{BC} \cong \overline{EF}$	Given
$\angle B = \angle FEL$	Construction
$\overline{AB} \cong \overline{LE}$	Construction
$\therefore \Delta ABC \cong \Delta LEF$	S.A.S postulate
	corresponding sides of congruent
	triangles)
Also $\overline{CA} \cong \overline{FD}$ (ii)	Given
$\therefore \qquad \overline{FL} \cong \overline{FD}$	From (i) and (ii)
In ΔFDL	
∠2 ≅ ∠4 (iii)	$\overline{FM} \cong \overline{FD}$ (proved)
Similarly, $\angle 1 \cong \angle 3 \dots$ (iv)	(from (iii) and (iv)
$\therefore m \angle 2 + m \angle 1 = m \angle 4 + m \angle 3$	1
Now, in $\triangle DEF \leftrightarrow \triangle LEF$	
$\overline{FD} \cong \overline{FL}$	Proved
And $m\angle EDF \cong m\angle ELF$	Proved
$\overline{DE} \cong \overline{LE}$	Each one $\cong \overline{AB}$
$\therefore \Delta DEF \cong \Delta LEF$	S.A.S. postulate
Also $\triangle ABC \cong \triangle LEF$	Proved
Hence $\triangle ABC \cong \triangle LEF$	Each $\Delta \cong \Delta LEF$ (Proved)
	I

If in the correspondence of the two right-angled triangles, the hypotenuse and one side of one triangle are congruent to the hypotenuse and the corresponding side of the other, then the triangles are congruent.





Given:

In $\triangle ABC \leftrightarrow \triangle DEF$

 $\angle B \cong \angle E$ (Right angles)

 $\overline{CA}\cong \overline{FD}, \ \overline{AB}\cong \overline{DE}$

To Prove:

 $\Delta ABC \cong \Delta DEF$

Construction:

Produce $\overline{\mathit{EF}}$ to point L such that $\mathit{EL}\cong\mathit{BC}$ and join points D and L.

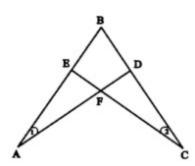
Proof:

	Statements		Reasons
m∠DEF	$F + m \angle DEL = 180^{\circ}$	(i)	Supplementary angles
Now	$m\angle DEF = 90^{\circ}$	(ii)	Given

∴ <i>m∠DEL</i> = 90°	From (i) and (ii)
In $\triangle ABC \leftrightarrow \triangle DEL$	
$BC \cong EL$	Construction
$\angle ABC \cong DEL$	Each equal to 90°
	Given
$\overline{AB} \cong \overline{DE}$	S.A.S. postulate
$\therefore \Delta ABC \cong \Delta DEL$	Corresponding angles of congruent
And $\angle C \cong \angle L$	triangles
	Corresponding sides of congruent
$\overline{CA} \cong \overline{LD}$	triangles
= =	Given
But $\overline{CA} \cong \overline{FD}$	Each is congruent to \overline{CA}
$\therefore \overline{LD} \cong \overline{FD}$	
In ΔDLF	$\overline{FD} \cong \overline{LD}$ (proved)
$\angle F \cong \angle L$	300000000000000000000000000000000000000
But $\angle C \cong \angle L$	Proved
	Each is congruent to ∠L.
$\angle .C \cong \angle F$	
In $\triangle ABC \leftrightarrow \triangle ADEF$	Given
$\overline{AB} \cong \overline{DE}$	Given
$\angle ABC \cong \angle DEF$	Proved
$\angle C \cong \angle F$	S.A.A. S.A.A
$\therefore \Delta ABC \cong \Delta DEF$	

Q1. In the given figure, AB \cong CB, \angle 1 \cong \angle 2. Prove that \triangle ABD \cong \triangle CBE.

Solution:



Given:

In the given figure $\angle 1 \cong \angle 2$ and $\overline{AB} \cong \overline{CB}$

To prove:

 $\Delta ABD \cong \Delta CBE$

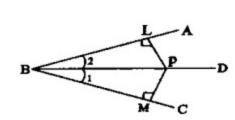
Proof:

Statements	Reasons	
In $\triangle ABD \leftrightarrow \triangle CBE$		
$AB \cong CB$	Given	
$\angle BAD \cong \angle BCE$	Given ∠1 ≅ ∠2	
$\angle ABD \cong \angle CBE$	Common	
$\therefore \Delta ABD \cong \Delta CBE$	S.A.A ≅ S.A.A	

Mathematics

Q2. From a point on the bisector of an angle, perpendiculars are drawn to the arms of the angle. Prove that these perpendiculars are equal in measure.

Solution:



Given:

 \overline{BD} is bisector of \angle ABC. P is point on \overline{BD} and \overline{PL} and \overline{PM} are perpendicular to \overline{AB} and \overline{CB} respectively

To prove:

 $\overline{PL} \cong \overline{PM}$

Proof:

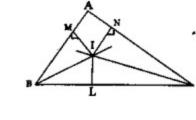
Statements	Reasons
In $\triangle BLP \leftrightarrow \triangle BMP$	
$\overline{BP} \cong \overline{BP}$	Common
$\angle BLP \equiv \angle BMP$	Each right angle (given)
$\angle LBP \equiv \angle MBP$	Given BD is bisector of angle B
$\Delta BLP \cong \Delta BMP$	S.A.A ≅ S. A. A.
So $\overline{PL} \cong \overline{PM}$	Corresponding sides of $\cong \Delta$'s.

2

Mathematics

Q3. In a triangle ABC, the bisectors of \angle B and \angle C meet in a point I. Prove that I is equidistant from the three sides of \triangle ABC.

Solution:



Given:

In \triangle ABD the bisector of \angle B and \angle C meet at I, IL, IM and IN are perpendiculars to the three sides of \triangle ABD.

To prove:

 $\overline{IL} \cong \overline{IM} \cong \overline{IN}$

From (i)and (ii)

Statements

Proof:

$ \Delta ILB \leftrightarrow \Delta IMB $	
\overline{BI} \overline{BI}	Common
$\angle lBL \cong \angle lBM$	Given BI is bisector of ∠B
$\angle lLB \cong \angle lMB$	Given each ∠ is right angles.
$\Delta ILB \cong \Delta IMB$	S.A.A ≅ S.A.A.
\overline{IL} \overline{IM} (i)	Corresponding sides of $\cong \Delta s$.
Similarly	
$\Delta IAC \cong \Delta INC$	Corresponding sides of $\cong \Delta s$.
So $IL \cong IN$ (ii)	Conceptioning sides of a As.

Reasons

3

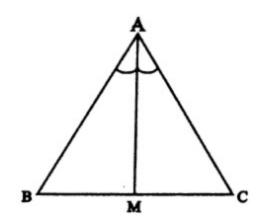
Mathematics

I is equidistant from	
the three sides of $\triangle ABC$.	

Page 4 / 4

Q1. Prove that any two medians of an equilateral triangle are equal in measure.

Solution:



Given:

In ΔABC , $\overline{AB}\cong \overline{AC}$ and M is mid point of BC.

To prove:

 \overline{AM} bisects $\angle A$ and \overline{AM} is perpendicular to \overline{BC} .

Proof:

Statements	Reasons
In $\triangle ABM \leftrightarrow \triangle ACM$	
$\overline{AB} \cong \overline{AC}$	Given
$\overline{BM} \cong \overline{CM}$	Given M is mid point of \overline{BC} .
	Common
$BM \cong AM$	S. S. S. ≅ S. S. S.
\therefore $\triangle ABM \cong \triangle ACM$	Corresponding sides of $\cong \Delta$'s.

1

Mathematics

So
$$\angle BAM \cong \angle CAM$$
 $\therefore \overline{AM}$ bisects $\angle A$

Corresponding sides of $\cong \Delta$'s.

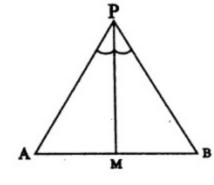
Also $\angle AMB \cong \angle AMC$

but $m\angle AMB \cong \angle AMC = 180^\circ$
 $\therefore m\angle AMB = \angle AMC = 90^\circ$

I. e. \overline{AM} is perpendicular to \overline{BC} .

Q2. Prove that a point, which is equidistant from the end points of a line segment, is on the right bisector of the line segment.

Solution:



Given:

 $\overline{\it AB}$ is a line segment and P is a point such that

 $\overline{PA} \cong \overline{PB}$

To prove:

P is on right bisector of \overline{AB}

Construction:

Draw \overline{PM} bisector of $\angle P$ meeting \overline{AB} at M.

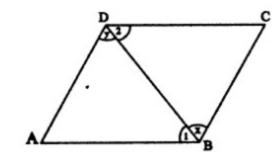
Proof:

2

Statements	Reasons		
In $\triangle APM \leftrightarrow \triangle BPM$			
$\overline{PA} \cong \overline{PB}$	Given		
$\angle APM \cong \angle BPM$	Construction.		
$\overline{PM} \cong \overline{PM}$	Common		
$\therefore \Delta APM \cong \Delta BPM$	S. S. S. ≅ S. S. S.		
So $\overline{AM} \cong \overline{BM}$	Corresponding sides of $\cong \Delta$'s.		
$\angle PMA \cong \angle PMB$	\overline{BC} is a straight line.		
but $m\angle PMA \cong \angle PMB = 180^{\circ}$	BC is a straight line.		
∴ <i>m</i> ∠ <i>PMA</i> = ∠ <i>PMB</i> = 90°			
So \overline{PM} is right bisector of \overline{AB}			
or P is on right bisector of \overline{AB} .			

Q1. In the given figure, $\overline{AB}\cong \overline{DC}$ and $\overline{AD}\cong \overline{BC}$, Prove that $\angle A\cong \angle C$, $\angle ABC\cong$ ∠ADC.

Solution:



Given:

In the figure, $\overline{AB}\cong \overline{DC}$ and $\overline{AD}\cong \overline{BC}$

To prove:

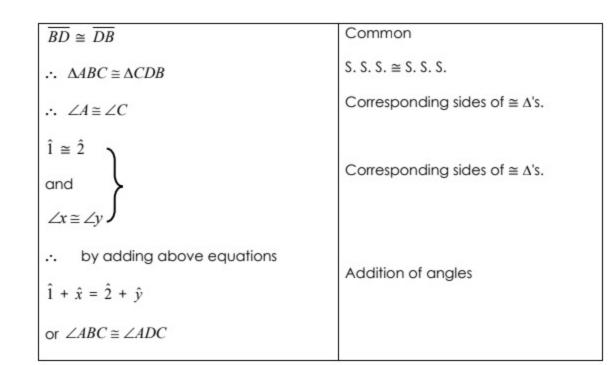
 $\angle A \cong \angle C$ $\angle ABC \cong \angle ADC$

Construction: Join B to D

Proof:

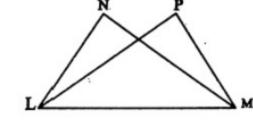
Statements	Reasons
In $\triangle ABD \leftrightarrow \triangle CDB$	
$\overline{AB} \cong \overline{DC}$	Given
$\overline{AD} \cong \overline{CD}$	Given

Mathematics



Q2. In the figure, $\overline{LN}\cong \overline{MP}$, $\overline{MN}\cong \overline{LP}$. Prove that $\angle N\cong \angle P$, $\angle NML\cong \angle PLM$.

Solution:



Given:

In the figure

 $\overline{LN}\cong \overline{MP}$ and $\overline{LP}\cong \overline{MN}$

To prove: $\angle N \cong \angle P$

 $\angle NML = \angle PLM$

Mathematics

2

Proof

Statements	Reasons
In $\Delta LMN \leftrightarrow \Delta MLP$	
$\overline{LN} \cong \overline{MP}$	Given
$\overline{LP} \cong \overline{MN}$	Given
$\overline{LM} \cong \overline{ML}$	Common
$\therefore \Delta LMN \cong \Delta MLP$	S. S. S. ≅ S. S. S.
$\therefore \angle N \cong \angle P$	Corresponding sides of $\cong \Delta$'s.
$\angle NML \cong \angle PLM$	Corresponding sides of $\cong \Delta$'s.
ZIVIII Z ZI ZIV	

Solution:

Q3. Prove that the median bisecting the base of an isosceles triangle bisects the vertex angle and it is perpendicular to the base.

Given:

An isosceles triangle ABC with the base \overline{BC} and \overline{AD} bisects at point D.

 $\overline{BD} \cong \overline{DC}$ and $\overline{AB} \cong \overline{AC}$

To prove: $\angle BAD \cong \angle CAD$

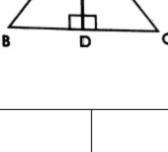
and $\overline{AD} \perp \overline{BC}$

Proof

Statements

Mathematics

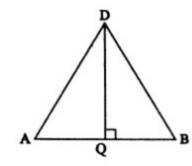
3



Reasons

v ·	
In the correspondence of	
$\Delta ABD \leftrightarrow \Delta ACD$	
$\overline{AB} \cong \overline{AC}$	Given
$\overline{AD} \cong \overline{AD}$	Common
$\overline{BD} \cong \overline{DC}$	Given
$\therefore \Delta ABD \cong \Delta ACD$	S. S. c postulate
Thus $\angle BAD \cong \angle CAD$	Corresponding angles of congruent
IIIOS ZBAD = ZCAD	triangle
$m\angle ADB = m\angle ADC = 180^{\circ}$	
$m\angle ADC = m\angle ADC = 180^{\circ}$ $m\angle ADC = m\angle ADC = 180^{\circ}$	Supplementary angles
$\Rightarrow 2 \ m \angle ADC = 180^{\circ}$	As $m\angle ADC = m\angle ADB$
$\Rightarrow m \angle ADC = 90^{\circ}$	
Hence $\overline{AD} \perp \overline{BC}$	

Q1. In $\triangle PAB$ of figure, $\overline{PQ} \perp \overline{AB}$ and $\overline{PA} \cong \overline{PB}$ proved that $\overline{AQ} \cong \overline{BQ}$ and $\angle APQ \cong \angle BPQ$.



Solution:

Given:

lη Δ*PAB*,

 $\overline{PQ} \perp \overline{AB}$, and $\overline{PA} \cong \overline{PB}$

To prove:

 $\overline{AQ} \cong \overline{BQ}$

 $\angle APQ \cong \angle BPQ$

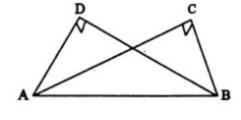
Proof:

Statements	Reasons		
In $\triangle APQ \leftrightarrow \triangle BPQ$			
$\overline{PA} \cong \overline{PB}$	Given		
$\angle AQP \cong \angle BQP \ \overline{PQ} \cong \overline{PQ}$	Given PQ [⊥] AB		
	Common		

Mathematics

 $\therefore \Delta APQ \cong \Delta BPQ$ $SO \ \overline{AQ} \cong \overline{BQ}$ $\angle APQ \cong \angle BPQ$ $H.S \cong H.S$ $Corresponding sides of <math>\cong \Delta$'s. $Corresponding sides of <math>\cong \Delta$'s.

Q2. In the figure, m \angle C = m \angle D = 90° and $\overline{BC}\cong \overline{AD}$. prove that $\overline{AC}\cong \overline{BD}$ and \angle BAC \cong \angle ABD.



Solution:

Civen:

In the figure

 $m \angle C = m \angle D = 90^{\circ} \, \mathrm{and} \, \, \overline{BC} \cong \, \overline{AD}$

To prove:

 $\angle ABC \cong \angle ABD$

Proof:

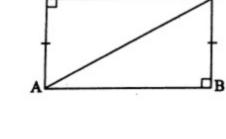
Biven
Given
Common
èi

2

Mathematics

$\overline{AB} \cong \overline{BA}$	H.S ≅ H.S
$\therefore \Delta ABD \cong \Delta BAC$	Corresponding sides of $\cong \Delta$'s.
SO $\overline{AC} \cong \overline{BD}$	Corresponding sides of $\cong \Delta$'s.
$\angle BAC \cong \angle ABD$	

Q3. In the figure, m \angle B = m \angle D = 90° and $\overline{AD} \cong \overline{BC}$. Prove that ABCD is rectangle.



Solution: Given:

In the figure,

 $m \angle B = m \angle D = 90^{\circ} \text{ and } \overline{AD} \cong \overline{BC}$ To prove:

Statements

ABCD is rectangle.

Construction:

Join A to C.

Proof:

 $\bar{B}\cong\bar{D}$

In $\triangle ABC \leftrightarrow \triangle CDA$	

Reasons

Given each angle = 90°.

3

Mathematics

$\overline{AC} \cong \overline{CA}$	Given
$\overline{BC} \cong \overline{DA}$	Common
$\therefore \Delta ABC \cong \Delta CDA$	H.S ≅ H.S
	Corresponding sides of $\cong \Delta$'s.
\therefore So $\overline{AB} \cong \overline{CD}$	Corresponding sides of $\cong \Delta$'s.
$\angle ACB \cong \angle CAD$ Hence ABCD is a	
rectangle.	

Page 4 / 4

Review Exercise 10

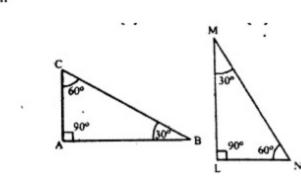
- 1. Which of the following are true and which are false?
- (i) A ray has two end points
- (ii) In a triangle, there can be only one right angle
- (iii) Three points are said to be collinear, if they lie on same line
- (iv) Two parallel lines intersect at a point.
- (\mathbf{v}) Two lines can intersect only at one point.
- (vi) A triangle of congruent sides has non-congruent angles.

Answers:

(i) F	(ii) T	(iii) ⊺	(iv) F	(v) T	(vi) F
-------	--------	---------	--------	-------	--------

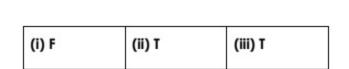
2. If $\triangle ABC \cong \triangle LMN$, then

- (i) m∠M ≅
- (ii) m∠N ≅
- (iii) m∠A ≅

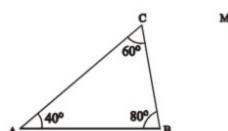


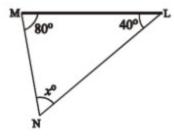
Solution:

Mathematics



3. If $\triangle ABC \cong \triangle LMN$, then find the unknown x.





Solution:

Given that: $\triangle ABC \cong \triangle LMN$

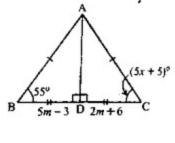
 $\angle C \cong \angle M$

or $m \angle C \cong m \angle M$

 \Rightarrow $60^{\circ} \cong x$ \Rightarrow $x \cong 60^{\circ}$

Q4. Find the value unknowns for the given congruent triangles.

Solution:

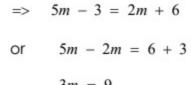


 $\triangle ADB \cong \triangle ADC$ $BD \cong CD$

Corresponding sides of = Δ 's.

Mathematics

2



 $=> mBD \cong mCD$

3m = 9 $\angle B \cong \angle C$

 $\Rightarrow m \angle B \cong m \angle C$ 55 = (5x + 5)

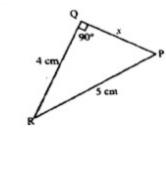
55 = 5x + 55x = 55 - 5 = 50

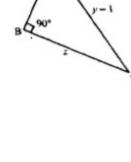
Corresponding sides of $\cong \Delta$'s.

 $x = 10^{\circ}$

Q5. If PQR \cong ABC, then find the unknowns Solution:

30101101





.. $\overline{BD} \cong \overline{CD}$ Corresponding sides of $\cong \Delta$ s.

 $\Delta PQR\cong ABC$

x = 3 cm

 $\overline{PR} \cong \overline{AC}$

Mathematics

3

y = 5 + 1 $\Rightarrow y = 6$

Corresponding sides of $\cong \Delta$'s.

Also $\overline{QR} \cong \overline{BC}$ Corresponding sides of $\cong \Delta$'s.

5 = y - 1

 $m\overline{QR} \cong m\overline{BC}$ $4 \ cm = z$

or z = 4 cm

Page 4 / 4