Prove that in a parallelogram:

- (i) Opposite sides are congruent
- (ii) Opposite angles are congruent.
- (iii) The diagonals bisect each other. Solution:

Given

In a quadrilateral ABCD, $\overline{BC} \parallel \overline{AD}$. $\overline{AB} \parallel \overline{DC}$, and the diagonals \overline{AC} , \overline{BD} meet each other at point O.

To Prove

 $\begin{array}{ll} \text{(i)} \ \overline{AB} \cong \overline{DC} \,, & \overline{AD} \cong \overline{BC} \,, \\ \text{(ii)} \, \angle ADC \cong \angle ABC \,, & \angle BAD \cong \angle BCD \\ \text{(iii)} \ \overline{OB} \cong \overline{OD} \,, & \overline{OA} \cong \overline{OC} \end{array}$

Construction

In the figure as shown, we label the angles as $\angle 1, \angle 2, \angle 3, \angle 4, \angle 5$ and $\angle 6$.

Proof:

Statements	Reasons
In $\triangle ABD \leftrightarrow \triangle CDB$	
∠4 ≅ ∠1	alternate angles
$\overline{BD}\cong \overline{BD}$,	Common

∠2 ≅ ∠3	alternate angles
$\therefore \ \Delta ABD \cong \Delta CDB$	A.S.A. ≅ A.S.A.
So, $\overline{AB} \cong \overline{DC}$	(corresponding sides of congruent
$\overline{AD} \cong \overline{BC}$,	triangles)
and $\angle A \cong \angle C$	(corresponding angles of congruent
(ii) In $\triangle ADB \leftrightarrow \triangle CDB$	triangles)
# SS - SS	Proved
∠1 ≅ ∠4 (a)	Proved
and $\angle 2 \cong \angle 3$ (b)	from (a) and (b)
$\therefore m \angle 1 + m \angle 2 = m \angle 4 + m \angle 3$	Proved in (i)
or $m \angle ADC \cong m \angle ABC$	
$\angle ADC \cong \angle ABC$ and	
$\angle BAD \cong \angle BCD$	
(iii) In $\triangle BOC \leftrightarrow \triangle DOA$	Proved in (i)
$\overline{BC} \cong \overline{AD}$	vertical angles
∠5 ≅ ∠6	Proved
∠3 ≅ ∠2	(A.A.S. ≅ A. A. S.)
$\therefore \ \Delta BOC \cong \Delta DOA$	(corresponding sides of congruent
Hence $\overline{OC}\cong\overline{OA}$, $\overline{OB}\cong\overline{OD}$	triangles)
	I .

If two opposite sides of a quadrilateral are congruent and parallel, it is a parallelogram.

Given

In a quadrilateral ABCD,

 $\overline{AB} \simeq \overline{DC}$ and ABDC

To Prove

ABCD is a parallelogram.

Construction

Join the point B to D and in the figure, name the angles as indicated: $\angle 1, \angle 2, \angle 3$ and $\angle 4$.

Proof:

Statements	Reasons
∠1≅ ∠2	Alternate angles
In $\triangle ABD \leftrightarrow \triangle CDB$	
$\overline{AB} \cong \overline{DC}$,	given
∠2≅∠1	Alternate angles
$\overline{BD} \cong \overline{BD}$	Common
$\therefore \Delta ABD \cong \Delta CDB$	S.A.S. postulate

Now $\angle 4 \cong \angle 3 \dots (i)$	(corresponding angles of
	congruent triangles)
∴ \overline{AD} \overline{BC} (ii)	from (i)
and $\overline{AD} \parallel \overline{DC}$ (iii)	given
Hence ABCD is a parallelogram	from (ii) - (iii)

The line segment, joining the mid-points of two sides of a triangle, is parallel to the third side and is equal to one half of its length.

Solution:

Given

In \triangle ABC, the mid-points of \overline{AB} and \overline{AC} are L and M respectively.

To Prove

$$\overline{LM} \parallel \overline{BC}$$
 and $m\overline{LM} = \frac{1}{2}m\overline{BC}$

Construction

Join M to L and produce $\overline{\mathit{ML}}$ to N such that $\overline{\mathit{ML}}\cong\overline{\mathit{LN}}$

Join N to B and in the figure, name the angles as $\angle 1, \angle 2$ and $\angle 3$ as shown.

-

Mathematics

Proof

Statement	s	Reasons
In $\triangle BLN \leftrightarrow \triangle ALM$		
$\overline{BL} \cong \overline{AL}$		Given
∠1≅ ∠2		Vertical angles
$\overline{NL} \cong \overline{ML}$		Construction
$\therefore \Delta BLN \cong \Delta ALM$		S.A.S. postulate
∴ ∠A≅ ∠3	(i)	(corresponding angles of congruent
ZA = Z3	(י)	triangles)
		(corresponding sides of congruent
and $\overline{NB} \cong \overline{AM}$	(ii)	triangles)
		From (i)
But NB ∥ AM		M is a point of \overline{AC}
=> <u>NB</u> ∥ <u>MC</u>	(iii)	Given
$\overline{MC} \cong \overline{AM}$	(iv)	{from (ii) and (iv)}
$\overline{NB} \cong \overline{MC}$	(v)	from (iii) and (v)
.: BCMN is a parallelogram	n	(opposite sides of a parallelogram
$\therefore \overline{BC} \parallel \overline{LM} \text{ or } \overline{BC} \parallel \overline{NL}$		BCMN
$\overline{BC} \cong \overline{NM}$	(vi)	Opposite sides of a parallelogram
111	(s. #2)	Construction
$m \overline{LM} = m \frac{1}{2} \overline{NM}$	(vii)	

2

{from (vi) and (vii)}

The medians of a triangle are concurrent, and their point of concurrency is the point of trisection of each median.

Given

ABC is the triangle

To prove

The medians of the ABC are concurrent, and the point of concurrency is the point of trisection of each median.

Construction

Draw two medians \overline{BE} and \overline{CF} of the ΔABC which intersect each other at G. Join A to G and produce it to point H such that $\overline{AG}\cong \overline{GH}$. Join H to the points B and C.

 \overline{AH} intersects \overline{BC} at the point D.

Proof

Statements	Reasons
In ΔACH, $\overline{GE} \Vdash \overline{CH}$	E and G are mid-points of \overline{AC} and \overline{AH}
or $\overline{BE} \parallel \overline{CH}$ (i)	G is a point of \overline{BE}
Similarly, $\overline{CF} \parallel \overline{BH} \dots (ii)$	from (i)
∴ BHCG is a parallelogram	from (i) and (ii)
and $m\overline{GD} = \frac{1}{2}m\overline{GH}$ (iii)	Diagonals \overline{BC} and \overline{GH} of a parallelogram BHCG intersect

	each other at point D.
$\overline{BD} \cong \overline{CD}$	
\overline{AD} is a median of ΔABC	G is the intersecting point of \overline{BE}
Medians \overline{AD} , \overline{BE} and \overline{CF} pass	and \overline{CF} and \overline{AD} pass through it.
through the point G	
	Construction
Now $\overline{GH} \cong \overline{AG}$ (iv)	from (iii) and (iv)
$\therefore m\overline{GD} = \frac{1}{2}m\overline{AG}$	
and G is the point of trisection of AD	
(v)	
Similarly, it can be proved that G	
is also the point of trisection of $\overline{\mathit{CF}}$	
and \overline{BE} .	

If three or more parallel lines make congruent segments on one transversal, they also intercept congruent segments on any other transversal.

Solution:

Given

 $\overrightarrow{AB} \parallel \overrightarrow{CD} \parallel \overrightarrow{EF}$

The transversal \overrightarrow{LX} intersects \overrightarrow{AB} , \overrightarrow{CD} and \overrightarrow{EF} at the points M, N and P respectively, such that $MN\cong \overrightarrow{NP}$. The transversal \overrightarrow{QY} intersects them at points R, S and T respectively.

To prove

 $\overline{RS} \cong \overline{ST}$

Constructio

From R, draw $\overline{RU} \parallel \overline{LX}$, which meets \overline{CD} at U. From S, draw $\overline{SV} \parallel \overline{LX}$ which meets \overline{EF} at V and according to the figure the names of the angles are $\angle 1, \angle 2, \angle 3$ and $\angle 4$.

1

Mathematics

Proof

Statements	Reasons
MNUR is a parallelogram	$\overline{RU} \parallel \overline{LX}$ (construction)
	$\overline{AB} \parallel \overline{CD}$ (given)
$\therefore \overline{MN} \cong \overline{RU} \qquad (i)$	opposite sides of a parallelogram
Similarly,	
$\overline{NP} \cong \overline{SV}$ (ii)	
But $\overline{MN} \cong \overline{NP}$ (iii)	Given
$\therefore \overline{RU} \cong \overline{SV}$	from (i), (ii) and (iii)
Also $\overline{RU} \parallel \overline{SV}$	each one II \overline{LX} (construction)
∴ ∠1≅ ∠2	Corresponding angles
and $\angle 3 \cong \angle 4$	Corresponding angles
In $\Delta RUS \leftrightarrow \Delta SVT$,	
	Proved
$\overline{RU} \cong \overline{SV}$	Proved
∠1≅ ∠2	Proved
∠3 ≅ ∠4	S.A.A. ≅ S.A.A.
$\therefore \ \Delta RUS \cong \Delta SVT$	(corresponding sides of congruent
And $\overline{RS}\cong \overline{ST}$	triangles)

Q1. One angle of a parallelogram is 130° . Find the measures of its remaining angles.

Solution:

In parallelogram ABCD $m \angle B = 130^{\circ}$

 $\angle D \cong \angle B$

Opposite angles of a parallelogram

$$m\angle D = m\angle B = 130^{\circ}$$

$$m\angle B + m\angle A = 180^{\circ}$$

$$130^{\circ} + m\angle A = 180^{\circ}$$

$$m\angle A = 180^{\circ} - 130^{\circ} = 50^{\circ}$$

$$m\angle C = m\angle A = 50^{\circ}$$

So unknown angles of parallelogram are 130°, 50°.

Q2. One exterior angle formed on producing one side of a Parallelogram is 40° .

Solution:

1

Mathematics

ABCD is parallelogram $m\angle CBL = 40^{\circ}$

$$m\angle ABC + 40^{\circ} = 180^{\circ}$$

: ABL is a straight line

Opposite angles of a parallelogram

$$m\angle D + m\angle C = 180^{\circ}$$

 $140^{\circ} + m\angle C = 180^{\circ}$
 $m\angle C = 180^{\circ} - 140^{\circ} = 40^{\circ}$
 $m\angle A = m\angle C = 40^{\circ}$

Opposite angles of parallelogram

So, the measures of interior angles of the parallelogram are 140°, 40°, 140° and 40°.

Q1. Prove that a quadrilateral is a parallelogram if its

- a. Opposite angles are congruent.
- b. Diagonals bisect each other.

Solution:

(a) Opposite angles are congruent.

Given:

In a quadrilateral ABCD

 $m\angle A = m\angle C$ $m\angle B = m\angle D$

To Prove:

ABCD is a parallelogram

Proof:

Statements	Reasons
$m\angle A = m\angle C$ (i)	Given
$m\angle B = m\angle D$ (ii)	Given
$m\angle A + m\angle B + m\angle C + m\angle D = 360^{\circ}$	Angles of quadrilateral
$m\angle A + m\angle B + m\angle A + m\angle B = 360^{\circ}$	From (i) and (ii)

Mathematics

(b) Diagonals bisect each other.

Solution:

Given:

In quadrilateral ABCD, diagonals \overline{AC} and \overline{BD} bisect each other, i.e. $\overline{OA}\cong\overline{OC}$, $\overline{OB}\cong \overline{OD}$

To prove:

ABCD is a parallelogram

Proof:

Statements	Reasons
In $\triangle ABO \leftrightarrow \triangle CDO$	
$\overline{OA}\cong \overline{OC}$,	Given

2

Mathematics

Given
Vertical opposite angles
$S.A. S \cong S.A.S.$
Corresponding angles of congruent triangles
∠1 = ∠2
Faces (1) and (12)
From (i) and (ii)

congruent. Solution:

Q2. Prove that a quadrilateral is a parallelogram if its opposite sides are

In quadrilateral ABCD

Given:

 $\overline{AB}\cong \overline{DC}$, and $\overline{AD}\cong \overline{BC}$ To prove:

ABCD is a parallelogram

Statements

Construction: Join B to D

Proof:

In $\triangle ABD \leftrightarrow \triangle CBD$

Mathematics

Reasons

3

$\overline{AD} \cong \overline{CB}$,	Given
$\overline{AB} \cong \overline{CD}$	Given
$\overline{BD} \cong \overline{BD}$	Common S.A. S ≅ S.A.S.
∴ $\angle ABD \cong \angle CDB$ $\angle 1 \cong \angle 2$ (i)	Corresponding angles of congruent triangles
And $\angle 4 \cong \angle 3$ (ii) Hence $\overline{AB} \parallel \overline{DC}$	(ii) alternate angles (ii) alternate angles
And $\overline{BC} \parallel \overline{AD}$ Hence ABCD is a parallelogram.	

Page 4 / 4

Q1. Prove that the line-segments joining the midpoints of the opposite sides of a quadrilateral bisect each other.

Solution:

Given:

In quadrilateral ABCD, P, Q, R, S are the mid-points of the sides PR and QS are joined, they meet at O.

To prove:

 $\overline{OP}\cong \overline{OR}, \ \overline{OS}\cong \overline{OQ}$

Construction:

Join P, Q, R, S in order. Join A to C.

Proof

Stat	ements	Reasons
$\overline{SD} \cong \overline{AC}$	(i)	In ΔADC, S, P, are mid points of AD, DC.
$m\overline{SP} = \frac{1}{2}m\overline{AC}$	(ii)	In ΔABC, P, Q are mid points of AB, BC.
3		

Mathematics

Q2. Prove that the fine-segments joining the midpoints of the opposite sides of $\boldsymbol{\alpha}$ rectangle are the right-bisectors of each other. Solution:

Given:

In rectangle ABCD, P, Q, R, S are mid-point of the sides P is joined to R, Q is joined to S. \overline{PR} and \overline{QS} intersect at O.

2

Mathematics

$\overline{\it PR}$ and $\overline{\it QS}$ are right bisectors of each other.

To prove:

Construction:

Join P, Q, R, S in order. Join A to C and B to D. Proof

Statements

$m\overline{SR} = \frac{1}{2}m\overline{AC}$ (ii) And $\overline{PQ} \parallel \overline{AC}$ (iii) From (i) and (ii) $m\overline{PQ} = \frac{1}{2}m\overline{AC}$ (iv) From (ii) and (iv) From (ii) and (iv) From (ii) and (iv) From (v) and (vi) PQRS is a parallelogram $m\overline{AC} = m\overline{BD}$ Diagonals of a rectangle $m\overline{AC} = m\overline{BD}$	$\overline{SR} \cong \overline{AC}$ (i)	In ΔADC, S, R, are mid points of AD, DC.
$m\overline{PQ} = \frac{1}{2}m\overline{AC}$ (iv) $\therefore \overline{SR} \parallel \overline{PQ}$ (v) and $m\overline{SR} = m\overline{PQ}$ (vi) $\therefore PQRS$ is a parallelogram $\overline{AC} = m\overline{BD}$ From (ii) and (iv) From (ii) and (iv) From (v) and (vi) Diagonals of a rectangle	$m\overline{SR} = \frac{1}{2}m\overline{AC}$ (ii)	In ΔABC, P, Q are mid points of AB, BC.
From (ii) and (iv) $\therefore \overline{SR} \parallel \overline{PQ} \qquad \text{(v)}$ and $m \overline{SR} = m \overline{PQ} \qquad \text{(vi)}$ $\therefore \text{PQRS is a parallelogram}$ $m \overline{AC} = m \overline{BD}$ From (ii) and (iv) From (v) and (vi) Diagonals of a rectangle	And $\overline{PQ} \parallel \overline{AC}$ (iii)	From (i) and (ii)
and $m \ \overline{SR} = m \overline{PQ}$ (vi) From (v) and (vi) Diagonals of a rectangle $m \ \overline{AC} = m \ \overline{BD}$	2	From (ii) and (iv)
PQRS is a parallelogram Diagonals of a rectangle $m \ \overline{AC} = m \ \overline{BD}$		From (v) and (vi)
	00 1000 pagestry (10 0 - 1 0 0 0 0	200 (0.00)
$m \overline{AC} = m \overline{BD}$	$m \overline{AC} = m \overline{BD}$	
	$m \overline{AC} = m \overline{BD}$	

Reasons

Mathematics

3

$$\overline{PR}$$
 and \overline{QS} are diagonals of rhombus PQRS. . . . \overline{PR} and \overline{QS} are right bisectors of each other. Diagonals of a parallelogram bisect each other.

Q3. Prove that the line-segment passing through the mid-points of one side and parallel to another side of a triangle also bisect the third side.

Solution.

In $\triangle ABC$, D is mid-point of AB \overline{DE} II \overline{BC} To prove:

$\overline{EA} \parallel \overline{EC}$

Proof

Given:

 $m \overline{PQ} = m \overline{QR}$

 $\cdot\cdot$. PQRS is a rhombus.

 $\therefore \ m \ \overline{PQ} \ = \ m \ \overline{QR} \ = \ m \ \overline{RS} \ = \ m \ \overline{SP}$

Construction: Take $\overline{EF} \parallel \overline{AB}$

... DBEF is a parallelogram.

 $\overline{EF}\cong \overline{DB}$

 $\overline{AD}\cong \overline{DB}$

Statements

$\overline{DE} \parallel \overline{BC}$ $\overline{EF} \parallel \overline{BD}$

4
Mathematics

Given

Construction

Opposite sides

Given

Reasons

$\overline{EF} \cong \overline{AD}$ $\angle 1 \cong \angle B$ and $\angle 2 \cong \angle B$ $\therefore \angle 1 \cong \angle 2$	From (i) and (ii) corresponding angles
In $\triangle ADE \leftrightarrow \triangle EFC$ $\angle 2 \cong \angle 1$ $\therefore \angle 3 \cong \angle C$	From (iv) Corresponding angle From (iii)
$\overline{AD} \cong \overline{EF}$	S.S.A.=S.S.A
Hence $\triangle ADE \cong \triangle EFC$ $\therefore \overline{EA} \cong \overline{EC}$	Corresponding sides

Q1. The distance of the point of concurrency of the medians of a triangle from its vertices are respectively 1.2 cm, 1.4 cm and 1.6 cm. Find the lengths of its medians.

Solution:

Let ABC be triangle with the point of concurrency of medians at G.

$$m \overline{AG}$$
 = 1.2 cm, $m \overline{BG}$ = 1.4 cm and $m \overline{CG}$ = 1.6 cm

$$m \overline{AP} = \frac{3}{2} (m \overline{AG}) = \frac{3}{2} \times 1.2 = 1.8 \text{cm}$$

$$m\overline{BQ} = \frac{3}{2}(m\overline{BG}) = \frac{3}{2} \times 1.4 = 2.1$$
cm

$$m\overline{CR} = \frac{3}{2} (m\overline{CG}) = \frac{3}{2} \times 1.6 = 2.4$$
cm

Q2. Prove that the point of concurrency of the medians of a triangle and the triangle which is made by joining the mid-points of its sides is the same.

Solution:

Mathematics

Given:

In triangle ABC, \overline{CP} , \overline{AQ} , \overline{BR} are medians, with meet at G. Δ PQR is formed by joining the mid points P, Q, R.

To prove:

G is the point of concurrency of the medians of $\triangle ABC$ and $\triangle PQR$.

Proof

Reasons
P, R, are mid-points of \overline{AB} , \overline{AC} .

2

Hence G is point of concurrency of	
medians of Δ AGC and Δ PQR.	

Q1. In the given figure \overline{AX} || \overline{BY} || \overline{CZ} || \overline{DU} || \overline{EV} and $\overline{AB} \cong \overline{BC} \cong \overline{CD} \cong \overline{DE}$. If m \overline{MN} = 1cm, then find the length of \overline{LN} and \overline{LQ} .

Solution:

 $\overline{AX} \parallel \overline{BY} \parallel \overline{CZ} \parallel \overline{DU} \parallel \overline{EV}$ and $\overline{AB} \cong \overline{BC} \cong \overline{CD} \cong \overline{DE}$

$$\overline{LM} \cong \overline{MN} \cong \overline{NP} \cong \overline{PQ}$$

$$m\overline{LN} = m\overline{LM} + m\overline{MN}$$

$$= m \overline{MN} + m \overline{MN}$$

$$= 1 cm + 1 m = 2 cm$$

$$m~\overline{LQ} = m~\overline{LM}~+m~\overline{MN} + m~\overline{NP}~+m~\overline{PQ}$$

$$= 1cm + 1 cm + 1 cm + 1 cm = 4 cm$$

Q2. Take a line segment of length 5.5 cm and divide it into five congruent parts.

Solution

Mathematics

Construction:

- (i) Draw a line segment $\overline{\it AB}$ of length 5 cm.
- (ii) Draw an acute angle $\angle BAX$.
- (iii) On \overline{AX} with the help of compass take five points P, Q, R, S, T such that $\overline{AP}\cong \overline{PQ}\cong \overline{QR}\cong \overline{RS}\cong \overline{ST}$.
- (IV) Join T to B.
- (v) Draw lines \overline{SF} , \overline{RE} , \overline{QD} , \overline{PC} parallel to \overline{TB} .

The points C, D, E, F divide the line Segment \overline{AB} into five congruent parts.

REVIEW EXERCISE 11

Q1. Fill in the blanks

- (i) In a parallelogram opposite sides are
- (ii) In a parallelogram opposite angles are
- (iii) Diagonals of a parallelogram each other at a point.
- (iv) Medians of a triangle are
- (v) Diagonal of a parallelogram divides the parallelogram into two triangles

Answers:

- (ii) equal/ congruent (i) parallel/congruent (iii) Intersect
- (iv) concurrent (v) congruent

Q2. In parallelogram ABCD

(i) $m \overline{AB} \dots m \overline{DC}$ (ii) $m \overline{BC} \dots m \overline{AD}$ (iii) $m \angle 1 \cong \dots$ (iv) $m \angle 2 \cong \dots$

Answers:

- (i) ≅ (ii) ≅
- (iii) m ∠3 (iv) m ∠1
- Q3. Find the unknowns in the given figure.

Solution:

Mathematics

opposite angles are congruent $n^{\circ} \cong 75^{\circ}$

n = 75

Alternate angles $y^{\circ} \cong n^{\circ}$

 $y^\circ \cong n^\circ \cong 75^\circ$

y = 45

suppletory angles $x^{\circ} + y^{\circ} = 180^{\circ}$

x + y = 180

x + 75 = 180

x = 180 - 75 = 105

 $m^{\circ} \cong x^{\circ}$ opposite angles

m = x = 105

 $m^{\circ} = 105^{\circ}$

Q4. If the given figure ABCD is a parallelogram, then find x, m. Solution

Mathematics

2

Q5. The given figure LMNP is a parallelogram. Find the value of m, n.

 $11x \cong 55^{\circ}$ 11x = 55

 $x = 5^{\circ}$

 $(5m +10)^{\circ} + 55^{\circ} = 180^{\circ}$ Sum of interior angles of Il lines

5m + 10 + 55 = 180

5m + 65 = 180 $m = 23^{\circ}$

Solution:

As opposite sides of a parallelogram are congruent

(i)

(ii)

Or 2m - n = 2

And 4m + n = 10

8m-4n=8

Adding (i) and (ii) 6m = 12

or m = 2

Putting m = 2 in (i) We have

3

Mathematics

Or
$$-n = -2$$

4-n=2

2(2)-n=2

Or
$$n = 2$$

m = 2, n = 2

find the remaining angles. Solution:

Q6. In the question 5, sum of the opposite angles of the parallelogram is 110°,

Opposite angles of a parallelogram are congruent

 $\angle L \cong \angle N$

But it is given that $m\angle L + m\angle N = 110$ $2(m\angle L) = 110 \ m\angle L = 55$

 $m\angle L = m\angle N = 55^{\circ}$ $m\angle L + m\angle P = 180^{\circ}$

Sum of interior angles between parallel lines $55 + m\angle P = 180^{\circ}$

 $m\angle P = 180^{\circ} - 55^{\circ} = 125^{\circ}$ Angles of the parallelogram are

55°, 125°, 55° and 125°

 $m\angle M = m\angle P = 125^{\circ}$

Page 4 / 4