THEOREM 13.1.1

If two sides of a triangle are unequal in length, the longer side has an angle of greater measure opposite to it.

Given

In $\triangle ABC$, $m\overline{AC} > m\overline{AB}$

To Prove

 $m \angle ABC > m \angle ACB$

Construction

On AC take a point D such that $\overline{AD}\cong \overline{AB}$. Join B to D so that \triangle ADB is an isosceles triangle.

Proof

Statements	Reasons		
In ΔABD			
m∠1 = m∠2 ····· (i)	Angles opposite to congruent sides,		
In ΔBCD			
m∠2 >m∠ACB ······ (ii)	An exterior angle of a triangle is		
	greater than a non-adjacent interior		
	angle		

Mathematics

∴ m∠1 >m∠ACB ····· (iii)	By (i) and (ii)
m∠ABC = m∠1 + m∠DBC	Postulate of addition of angles.
∴ m∠ABC > m∠1 ····· (iv)	By (iii) and (iv)
Hence m∠ABC > m∠ACB	Transitive property of inequality of
	real numbers

THEORM 13.1.2

Converse of THEORM 13.1.1

If two angles of a triangle are unequal in measure, the side opposite to the greater angle is longer than the side opposite to the smaller angle.

Given

In $\triangle ABC$, $m\angle A > m\angle B$

To Prove

 $m\overline{BC} > m\overline{AC}$

Proof

Statements	Reasons		
If, $m\overline{BC} \gg m\overline{AC}$, then			
either (i) $m\overline{BC} = m\overline{AC}$	Trichotomy property of real numbers		
or (ii) $m\overline{BC} < m\overline{AC}$ From (i) if $m\overline{BC} = mAC$, then			
m∠A = m∠B	Angles opposite to congruent sides are		
	congruent		
which is impossible.	Contrary to the given.		

Mathematics

From (ii) if $m\overline{BC} < m\overline{AC}$, then	
m∠A < m∠B	The angle opposite to longer side is
	greater than angle opposite to smaller
This is also impossible to contrary to	side
what is given	
∴ m BC ≠ m AC	
and m\(\overline{BC} < m\(\overline{AC} \)	Trichotomy property of real numbers.
Hence $m\overline{BC} > m\overline{AC}$	
1	I .

THEORM 13.1.3

The sum of the lengths of any two sides of a triangle is greater than the length of the third side.

Solution

Given

ABC is triangle

To Prove

- (i) $m\overline{AB} + m\overline{BC} > m\overline{AC}$
- (ii) mAC + $m\overline{AB}$ > $m\overline{BC}$
- (iii)mAC + $m\overline{BC}$ > $m\overline{AB}$

Construction

Take a point D on CA such that $\overline{AD} \cong \overline{AB}$. Join B to D and name the angles. \angle 1, \angle 2 as shown in the given figure.

Proof

Statements		Reasons		
In Δ CBD				
mz3 > mz2	(i)	Exterior angle is greater than non- adjacent interior angle		
mz2 = mz1	(ii)	Construction		

Mathematics

mz3 > mz1	By (i) and(ii)
∴ mz3 > mz1 and mĀB > mAD (iii) similarly mBC > mDC mĀB + mBC > mĀD + mDC or mĀB + mBC > mĀC Similarly, by drawing angle bisector of ZA and zC it can be proved that	By (i) and(ii) In △ ABD the side opposite to the larger angle is greater than that of the side opposite to the smaller angle. Adding (iit) and (iv) ∴ mĀD + mDC = mĀC
$m\overline{AC} + m\overline{AB} > m\overline{BC}$	
and $m\overline{AC} + m\overline{BC} > m\overline{AB}$	

Theorem 13.1.4

From a point, outside a line, the perpendicular is the shortest distance from the point to the line.

Given

A line $\vec{A}\vec{B}$ and a point C (not lying on $\vec{A}\vec{B}$) and a point D on $\vec{A}\vec{B}$ such that $\overline{C}\overline{D}$ is perpendicular to $\vec{A}\vec{B}$.

To Prove

 $m\overline{CD}$ is the shortest distance from the point C to $\vec{A}\vec{B}$

Construction

Take a point E on $\vec{A}\vec{B}$. Join C and E to form a Δ CDE.

Proof

Statements	Peasons		
In ACDE			
m∠CDB > m∠CED	An exterior angle of a triangle is		
	greater than non-adjacent interior		
	angle.		
But m∠CDB = m∠CDE	Supplement of right angle.		
∴ m∠CDE > m∠CED			
or m∠CED < m∠CDE	Reflexive property if inequality		
or $m\overline{CD}$ < $m\overline{CE}$	Side opposite to greater angle is		
But E is any point on AB	greater.		
Hence $m\overline{\it CD}$ is the shortest			
distance from C to \overrightarrow{AB} .			

EXERCISE 13.1

Q1. Two sides of a triangle measure 10 cm and 15 cm. Which of the following measure is possible for the third side?

(b) 20 cm (c) 25 cm (d) 30 cm (a)5 cm

Solution:

(a) Measure of sides are 10 cm, 15 cm and 5 cm

As 10 + 5 = 15

Since the 'sum of two sides is equal to the third side therefore:

So, 5 cm is not possible.

(b) Sides are 10 cm, 15 cm and 20 cm

10 + 15 > 20

10 + 20 > 15

15 + 20 > 10

Since the sum of two sides is greater than third side therefore:

20 cm is possible for third side.

(c) Sides are 10 cm, 15 cm and 25 cm

Since the sum of two sides is equal to the third side therefore: So, 25 cm is not possible.

10 + 15 < 30

(d) Sides are 10 cm, 15 cm and 30 cm

Mathematics

Since the sum of two sides is equal to the third side therefore: So, 30 cm is not possible.

Q2. O is interior point of the ΔABC . Show that

$$m \overline{OA} + m \overline{OB} + m \overline{OC} > \frac{1}{2} (m \overline{AB} + m \overline{BC} + m \overline{CA})$$

Given:

Solution:

O is a point in side a triangle ABC. O is joined with A, B and C. To prove:

$$m \, \overline{OA} + m \, \overline{OB} + m \, \overline{OC} > \frac{1}{2} \, \left(m \, \overline{AB} + m \, \overline{BC} + m \, \overline{CA} \right)$$

Proof

Statements	Reasons
In Δ <i>OAB</i>	
mOA + mOB > mAB $ln \Delta OBC$ mOB + mOC > mAC	In a triangle the sum of measure of two dies is greater than measure of third side
In ΔCOA	

Mathematics

2

Adding (i), (ii), (iii)
$$2(mOA + mOB + mOC)$$

$$> mAB + mBC + mAC$$

$$mOA + mOB + mOC$$

$$> (mAB + mBC + mCA)$$
Dividing both sides by 2

Solution: $m\angle B = 70^{\circ}$ $m \angle C = 45^{\circ}$

3. In the $\triangle ABC$, $m \angle B = 70^{\circ}$ and $m \angle C = 45^{\circ}$. Which of the sides of the triangle is

 $m\angle A + m\angle B + m\angle C = 180^{\circ}$

 $m\angle A + 70^{\circ} + 45^{\circ} = 180^{\circ}$

(Longest)

 $m\angle A + 115^{\circ} = 180^{\circ}$ $m\angle A = 180^{\circ} - 115^{\circ} = 65^{\circ}$ Since the largest angle is B. So, the longest side is opposite to B is \overline{AC}

longest and which is the shortest?

mOC + mOA > mAC

Since the smallest angle is C. So, the shortest side is opposite to C is \overline{AB} (Shortest)

of the other two sides.

Q4. Prove that in a right-angled triangle, the hypotenuse is longer than each

Mathematics

3

 $\therefore m \angle B > m \angle A$ And $m \angle B \ m \angle C$

 \cdot . Side opposite to $\angle B$

Solution:

Q5. In the triangle figure, $\overline{AB} > \overline{AC}$. \overline{BD} and \overline{CD} are the bisectors of $\angle B$ and \angle C respectively. Prove that $\overline{BD} > \overline{DC}$.

 \overline{BD} is bisector of $\angle B$ $\therefore m \angle ABD = m \angle CBD$

Solution:

Opposite angles

Opposite angles

 $\Rightarrow \frac{1}{2}mACB > \frac{1}{2}mABC$

It is given that $\overline{AB} > \overline{AC}$

ACB < ABC

Mathematics

$$m/R(T) > -m/(RI)$$

ACB < ABC

EXERCISE 13.2

Q1. In the figure, P is any point and \overline{AB} is a line. Which of the following is the shortest distance between the point P and the line \overline{AB} ?

(a)
$$m\overline{PL}$$

(b)
$$m \overline{PM}$$

(c)
$$m \overline{NP}$$
 (d) $m \overline{PO}$

We all know that form a point outside the line, the perpendicular is the shortest distance from the point to the.

As \overline{PN} is perpendicular to \overline{AB} .

So \overline{PN} is the shortest distance.

Q2. In the figure, P is any point lying away from the line AB. Then m \overline{PL} will be the shortest distance if

(a)
$$m \angle PLA = 80^{\circ}$$
 (b) $m \angle PLB = 100^{\circ}$ (c) $m \angle PLA = 90^{\circ}$

Solution

We know that for a point outside a line, the shortest distance from the point to the line is perpendicular to the line.

1

Mathematics

As
$$m\overline{PL}$$
 is shortest,

So,
$$\overline{PL}$$
 is perpendicular to \overline{AB} .

Q3. In the figure, \overline{PL} is perpendicular to the line AB and $m \, \overline{LN} > m \, \overline{LM}$. Prove that $m \, \overline{PN} > m \, \overline{PM}$.

Given

 \overline{PL} is perpendicular to \overline{AB} and $m\,\overline{LN} > m\,\overline{LM}$

To prove

$$m \overline{PN} \ge m \overline{PM}$$

Proof

Statements	Reasons
$\ln \Delta LPN$	Given
$m\angle PLN = 90^{\circ}$	Angle of a triangle
∴ <i>m∠PLN</i> < 90° (i)	
In Δ <i>PLM</i>	Exterior angle
$m\angle PMN > m\angle PLM$	∠ <i>PLM</i> = 90°
∴ <i>m∠PMN</i> < 90° (ii)	from (i) and (ii)
$\ln \Delta PMN$	opposite sides

2

Mathematics

$m\angle PMN > m\angle PNL$	
$m\overline{PN} > m\overline{PM}$	

Page 3 / 3

REVIEW EXERCISE 13

Q1. Which of the following are true and which are false?

- (i) The angle opposite to the longer side is greater.
- (ii) In a right-angled triangle greater angle is of 60°.
- (iii) In an isosceles right-angled triangle, angles other than right angles are each of 45°.
- (iv) A triangle having two congruent sides is called equilateral triangle.
- (v) A perpendicular from a point to line is shortest distance.
- (vi) Perpendicular to line form an angle of 90°.
- (vii) A point outside the line is collinear
- (viii) Sum of two sides of triangle is greater than the third.
- (ix) The distance between a line and a point on it is zero.
- (x) Triangle can be formed of lengths 2 cm, 3 cm and 5 cm.

Answers:

(i) T	(ii) F	(iii) ⊺	(iv) F	(v) ⊺	(vi) ⊺
(vii) F	(viii) ⊺	(ix) ⊺	(x) F		

Q2. What will be angle for shortest distance from an outside point to the line?

Solution:

The shortest distance between a point and a line is perpendicular from the point to the line. So, the angle for shortest distance from an outside point is

Mathematics

90°.

Q3. If 13 cm, 12 cm, and 5 cm are the lengths of a triangle, then verify that difference of measures of any two sides of a triangle is less than the measure of the third side.

Solution

Let the three sides be

$$a = 13 cm, b = 12 cm, c = 5 cm$$

 $a - b - 13 - 12 = 1 < 5 = c$

i.e.
$$a - b < c$$

$$b - c < a$$

i.e.
$$a - c < b$$
 (iii)

From (i), (ii) and (iii) we find that the difference of measures of any two sides of a triangle is less than the measure of the third side.

(i)

(ii)

Q4. If 10 cm, 6 cm and 8 cm are the lengths of a triangle, then verify that sum

of measures of two sides of a triangle is greater than the third side.

Solution

Let the measure of the sides of the triangle be

$$a = 10 \text{ cm}, b - 6 \text{ cm}, c = 8 \text{ cm}$$

$$10 + 6 = 16 > 8$$

$$a + b < c \tag{i}$$

$$6 + 8 = 14 > 10$$

 $b + c < a$

c + a > b

2

Mathematics

From (i), (ii) and (iii) we conclude that the sum of measures of two sides of a triangle is greater than the third side.

Q5. 3 cm, 4 cm and 7 cm are not the lengths of the triangle. Give the reason.

Let
$$a = 3 cm$$
, $b = 4 cm$, $c = 7 cm$

$$a + b = 3 + 4 = 7 = c$$

i.e. $a + b = c$

Since we know that for a triangle sum of measures of two sides should be

greater than measure of the third side.

3 + 4è 7

So, 3 cm, 4 cm and 7 cm are not the, lengths of the triangle

Q6. If 3 cm and 4 cm are the lengths two sides of a right-angle triangle then what should be the third length of the triangle.

Solution Let the three sides be

 $3^2 + 4^2 = a^2$ (Pythagoras theorem)

$$9 + 16 = a^2$$

$$a^2 = 25$$

 $\Rightarrow a = 5$ The third Length is 5 cm.