THEORM 15.1.1

PYTHAGORAS' THEOREM

In a right-angled triangle, the square of the length of hypotenuse is equal to the sum of the squares of the lengths of the other two sides.

Given

 \triangle ACB is a right-angled triangle in which $m\angle C$ = 90° and $m\overline{BC}$ = a, m \overline{AC} = b and m \overline{AC} = c.

To prove

 $c^2 = a^2 + b^2$

Construction

Draw CD perpendicular from C on AB.

Let $m\overline{CD} = h$, $m\overline{AD} = x$ and $m\overline{BD} = y$. Line segment CD splits \triangle ABC into two \triangle s ADC and BDC which are separately shown in the figures (ii) -a and (ii) b respectively.

1

Mathematics

Proof

Statements	Reasons		
In $\triangle ADC \leftrightarrow \triangle ACB$	Refer to figure ii (a) and (i) common-self congruent		
$\angle A \cong \angle A$			
$\angle ADC \cong \angle ACB$	Construction given both		
$\angle C \cong \angle B$	measure 90°		
	$\angle C$ and $\angle B$, complements of $\angle A$		
$\therefore \Delta ADC \cong \Delta ACB$	Congruency of three angles		
x _ b	(Measure of corresponding sides		
$\therefore = \frac{x}{b} = \frac{b}{c}$	of similar triangles is similar)		
or $x = \frac{b^2}{c}$ (i)			
Again, in correspondence	Refer to figure ii(b) and (i)		
$\Delta BDC \leftrightarrow \Delta BCA$	Common self-congruent		
$\angle B \cong \angle B$	Construction given, both measure 90°		
$\angle BDC \cong \angle BCA$	∠C and ∠A at complements of ∠M		
$\angle C \cong \angle A$	Congruency of three angles.		
$\therefore \Delta BDC \sim \Delta BCA$			
$\therefore = \frac{y}{a} = \frac{a}{c}$	Sides of similar triangles are		
$\therefore y = \frac{a^2}{c} \qquad \dots (ii)$	proportional. (Theorem 6)		
	Supposition		

2

Mathematics

But $y + x = c$	
$\therefore \frac{a^2}{c} + \frac{b^2}{c} = c$	By (i) and (ii)
or $a^2 + b^2 = c^2$	Multiplying both sides with c.
i.e. $c^2 = a^2 + b^2$	

THEOREM 15.1.2

(CONVERSE OF PYTHAGORAS' THEOREM

15.1.1)

In a triangle if the sum of the squares of the measure of two sides is equal to the square of the measure of the third side, the triangle is a right-angled triangle.

Given

In a \triangle ABC, $m\overline{AB}=c$, $m\overline{BC}=a$ and $m\overline{AC}=b$ such that $a^2+b^2=c^2$

To prove

 $m \angle ACB = 90^{\circ}$, $\triangle ACB$ is a right-angled triangle.

Construction

Draw \overline{CD} Perpendicular to \overline{BC} such that \overline{CD} = \overline{CA} . Join B and D.

Proof

Statements	Reasons
ΔDCB is a right-angled triangle	Construction
$\therefore (m \overline{BD})^2 - a^2 + b^2$	Pythagoras theorem
But $a^2 + b^2 = c^2$	Given

Mathematics

$\therefore (m \overline{BD})^2 = c^2$	
or $m\overline{BD} = c$	Taking square root of both sides.
Now in	
$\Delta DCB \leftrightarrow \Delta ACB$	
$\overline{CD} \cong \overline{CA}$	Construction
	Common
$\overline{BC} \cong \overline{BC}$	Each is equal to c
$\overline{DB} \cong \overline{AB}$	S.S.S ≅ S.S.S
$\therefore \Delta DCB \cong \Delta ACB$	Corresponding angles of congruent
∴ ∠DCB ≅ ∴ ∠ACB	triangles.
B∪t <i>m∠DCB</i> = 90°	Construction
∴ <i>m∠ACB</i> = 90°	
and the Δ ACB is a right-angled triangle.	

EXERCISE 15.1

Q1. Verify that the Δs having the following measures of sides are right-angled. (i) a = 5cm, b = 12cm, c = 13cm

Solution:

By Pythagoras theorem $a^2 + h^2 = (5)^2 + (12)^2$

= 25 + 144 = 169 $c^2 = (13)^2 = 169$ $\therefore a^2 + b^2 = c^2$

Thus, the triangle is right angled triangle.

(ii) a = 1.5 cm, b = 2cm, c = 2.5cm

Solution: By Pythagoras tneorem $a^2 + b^2 = (1.5) + (2)$

 $c^2 = (2.5)^2 = 6.25$ $\therefore a^2 + b^2 = c^2$ Thus, the triangle is right angled triangle.

= 2.25 + 4 = 6.25

(iii) a = 9 cm, b = 12 cm, c = 15 cmSolution:

 $a^2 + b^2 = (9)^2 + (12)^2$ = 81 + 144 = 225 $c^2 = (15) = 225$

By Pythagoras theorem

 $\therefore a^2 + b^2 = c^2$

Solution:

 $\therefore a^2 + b^2 = c^2$

 $\overline{AC} = 2ab$

Hence the triangle is right angled triangle.

By Pythagoras theorem

Mathematics

 $\alpha^2 + b^2 = (16)^2 + (2)^2$ = 256 + 900 = 1156 $c^2 = (34)^2 = 1156$

Hence the triangle is right angled triangle. Q2. Verify that $a^2 + b^2$, $a^2 - b^2$ and 2ab are the measures of the sides of a

(iv) a = 16cm, b = 30 = cm, c = 34cm

right-angled triangle where a and b are any two real numbers (a > 6) Solution: Let ABC be triangle such that $\overline{AB} = a^2 + b^2,$ $\therefore \overline{BC} = a^2 - b^2,$

By Pythagoras theorem

 $|\overline{AB}|^2 = (a^2 + b^2)^2 = a^4 + b^4 + 2a^2b^2$ and $|\overline{AC}|^2 + |\overline{BC}|^2 = (2ab)^2 + (a^2 - b^2)^2$

 $= 4a^4 + \alpha^4 + b^4 - 2a^2b^2$ $= a^4 + b^4 + 2a^2b^2$ So $|\overline{AB}|^2 = |\overline{AC}|^2 + |\overline{BC}|^2$ Hence ABC is a right-angled triangle.

Q3. The three sides of a triangle are of measure 8, x and 17 respectively. For what value of x will it become base of a right-angled triangle? Solution: If x is the base of right-angled triangle then -17 is the measure of hypotenuse.

By Pythagoras Theorem

 $(17)^2 = (x)^2 + (8)^2$

 $289 = x^2 + 64$

 $x^2 = 289 - 64$

(i) $\overline{AD} \perp \overline{BC}$

∴ D is mid-point for BC

So $m \overline{BD} = \frac{1}{2} (28) = 14 cm$

 $(50)^2 = (14)^2 + (m \overline{AD})^2$

 $m\overline{AD} = 48cm$

(ii) Area of ΔABC

 $=(m\overline{BC})(m\overline{AD})$

= (28)(48) $= 672cm^2$

Solution:

in the right triangles AAOB

In the right triangle ΔBOC

In the right triangle ΔDOC

Adding (i) and (iv)

Solution:

Hence $m \overline{AB}^2 + m \overline{CD}^2 = m \overline{AD}^2 + m \overline{BC}^2$

 $b^2 = 49 + h^2$

 $a^2 + b^2 = 144$

 $a^2 + b^2 = 74 + 2h^2$

 $74 + 2h^2 = 144$

 $h^2 = 35$

 $h = \sqrt{35}units$

 $2h^2 = 144 - 74 = 70$

 $a^2 = 25 + 35 = 60$

 $a = \sqrt{60}$

 $b^2 = 84$

 $(m \overline{AC})^2 = (m \overline{AD})^2 + (m \overline{DQ})^2$

 $(13)^2 = (m \overline{AD})^2 + (5)^2$

 $(m \overline{AD})^2 = 169 - 25 = 144$

 $m\overline{AD} = 12cm$

 $(m \overline{AB})^2 = (m \overline{AD})^2 + (m \overline{BD})^2$

 $(15)^2 = (12)^2 + (x)^2$

 $x^2 = 225 - 144 = 81$

x = 9 cm

 $225 = 144 + x^2$

 $m\overline{BC} = 500 \text{ m}, m\overline{AC} = 300 \text{ m}$

By Pythagoras theorem

 $m \overline{AB}^2 = m \overline{BC}^2 + m \overline{AC}^2$

 $m \overline{AB}^2 = (500)^2 + (300)^2$

 $m\,\overline{AB}^{\,2} = 250000 + 90000$

 $m \overline{AB}^2 = 340000$

 $m \overline{AB}^2 = \sqrt{34 \times 10000}$

 $m \overline{AB} = 100 \sqrt{34} \text{ m}$

 $(m\,\overline{AB}\,)^2=(m\,\overline{AC}\,)^2+(m\,\overline{BC}\,)^2$

 $(17)^2 = (m \overline{AC})^2 + (8)^2$

 $(m \overline{AC})^2 = (17)^2 - (8)^2$

 $(m\overline{AC})^2 = 289 - 64 = 225$

 $m\overline{AC} = \sqrt{225} = 15 \text{ cm}$

meet \overline{AB} produced at L.

 $m\overline{LD} = m\overline{BC} = 6$ km

 $m\overline{BL} = m\overline{CD} = 3$ km

We have to find AD

ALD is a right angled $\boldsymbol{\Delta}$

Solution

Solution:

Solution:

 $169 = (m \overline{AD})^2 + 25$

In right angled AABC

Adding (1) and (2)

from (3) and (4)

Put $h^2 = 35$ in (1)

Put $h^2 = 35$ in (2)

From $\triangle ADC$

 $\ddot{\cdot}$

From **AABD**

 $m\overline{AB}^2 = m\overline{AO}^2 + m\overline{OB}^2$ (i)

 $m \overline{BC}^2 = m \overline{OB}^2 + m \overline{OC}^2$ (ii)

 $m \overline{DC}^2 = m \overline{OC}^2 + m \overline{OD}^2$ (iii)

 $x^2 = 225$

x = 15

 $(hypotenuse)^2 = (base)^2 + (perpendicular)^2$

3

Mathematics

2

Mathematics

Q4. In an isosceles Δ , the base $m \, \overline{BC} = 28 \, \text{cm}$, and $m \, \overline{AB} = m \, \overline{AC} = 50 \, \text{cm}$. If m $\overline{AD} \perp m \overline{BC}$, then find (i) length of AD Area of AABC Solution:

From right angled $\triangle ABD$

 $(m\,\overline{AB}\,)^2=(m\,\overline{BD}\,)^2+(m\,\overline{AD}\,)^2$ $(m\overline{AD})^2 = (50)^2 - (14)^2 = 2500 - 196 = 2304$

Adding (i) and (ii) $m\overline{AB}^2 + m\overline{BC}^2 = m\overline{AO}^2 + m\overline{OB}^2 + m\overline{OC}^2 + m\overline{OD}^2$

 $m\overline{AB} = 5 + 7 = 12$ In right angled ABDC $a^2 = 25 + h^2$ (1) In right angled AADC

(2)

(3)

 $a = 2\sqrt{15} units$ $b^2 = 49 + 35$ $b = \sqrt{84} = 2\sqrt{21}units$ So, $a = 2\sqrt{15}units$ $h = \sqrt{35}units$ $b = 2\sqrt{21}units$ (ii) Find the value of x in the shown figure.

Q7. A plane is at a height of 300 m and is 500 m away from the airport as shown in the figure. How much distance will it travel to land the airport?

Mathematics

5

Mathematics

By Pythagoras Theorem

Q9. A student travels to his school by the route as shown in the figure. Find m

A is house, B is bus stop and D is school. Produce \overline{AB} and draw $\overline{DL} \parallel \overline{DC}$ to

 \overline{AD} , the direct distance from his house to school.

 $m\overline{AL} = m\overline{AB} + m\overline{BL} = 2 + 3 = 5 \text{ km}$

 $=(5)^2+(6)^2=25+36=61$ $m \overline{AD} = \sqrt{61} \text{ km}$

8

Mathematics

 $m \overline{AD}^2 = m \overline{AL}^2 + m \overline{LD}^2$

Q5. In a quadrilateral ABCD, the diagonals \overline{AC} and \overline{BD} are perpendicular to each other. Prove that $m \overline{AB}^2 + m \overline{CD}^2 = m \overline{AD}^2 + m \overline{BC}^2$ The diagram AC and BD of the quadrilateral ABCD meet at O perpendicular Mathematics $m\,\overline{AD}^{\,2} + m\,\overline{BC}^{\,2} = m\,\overline{OA}^{\,2} + m\,\overline{OB}^{\,2} + m\,\overline{OC}^{\,2} + m\,\overline{OD}^{\,2}$ Q6. (i) In the \triangle ABC as shown in the figure, $m\angle ACB$ = 90° and $\overline{CD} \perp \overline{AE}$. Find the lengths a, h and b if $m \overline{BD} = 5$ units and $m \overline{AD} = 7$ units.

Q8. A ladder 17 m long rests against a vertical wall. The foot of the ladder is 8 m away from the base of the wall. How high up the wall will the ladder reach? Mathematics

300 m

By Pythagoras theorem

REVIEW EXERCISE 15

Q1. Which of the following is true and which are false?

- (i) In a right-angled triangle greater angle is of 90°.
- (ii) In a right-angled triangle right angle is of 60°.
- (iii) In a right triangle hypotenuse is a side opposite to right angle.
- (iv) If a, b, c are sides of right-angled triangle with c as longer side then $c^2 = a^2 + b^2$
- (v) If 3 cm and 4 cm are two sides of a right-angled triangle, then hypotenuse is 5 cm.
- (vi) If hypotenuse of an isosceles right triangle is $\sqrt{2}$ cm then each of other side is of length 2 cm.

Answers:

(i) T	(ii) F	(iii) T	(iv) T	(v) T	(vi) F	
					1	

Q2. Find the unknown value in each of the following figures.

(i)

By Pythagoras Theorem

$$x^2 = 4^2 + 3^2$$

$$x^2 = 16 + 9$$

$$x^2 = 25$$

Mathematics

$$x^2 = \sqrt{25}$$

$$x = 5cm$$

(ii)

By Pythagoras Theorem

$$(10)^2 = (6)^2 + (x)^2$$

$$100 = 36 + x^2$$

$$x^2 = 100 - 36 = 64$$

$$x^2 = \sqrt{64}$$
$$x^2 = 8cm$$

By Pythagoras Theorem

$$(13)^2 = (x)^2 + (5)^2$$

169 = $x^2 + 25$

$$169 = x^2 + 25$$
$$x^2 = 169 - 25$$

$$x^2 = 169 - 2$$
$$x^2 = \sqrt{144}$$

x = 12cm

2

Mathematics

(iv)

By Pythagoras Theorem

$$(\sqrt{2})^2 = (x)^2 + (1)^2$$

2 = $x^2 + 1$

$$x^2 = \sqrt{1} = 1cm$$

3