Parallelograms on the same base and between the same parallel lines (or of the same altitude) are equal in area.

Solution:

Given:

Two parallelograms ABCD and ABEF having the same base \overline{AB} and between the same parallel lines AB and DE.

To Prove:

Area of parallelogram ABCD = Area of parallelogram ABEF

Proof

Statements	Reasons	
area of (parallelogram ABCD)		
= area of (quadrilateral ABED) + area of $(\triangle CBE)$ (1)	Area addition axiom	
area of (parallelogram ABEF)		
= area of (quadrilateral ABED) + area of (ΔDAF) (2)	Area addition axiom	
$m\overline{CB} = m\overline{DA}$ $m\overline{BE} = m\overline{AF}$	opposite sides of a parallelogram opposite sides of a parallelogram	

$m\angle CBE = m\angle DAF$	opposite sides of a parallelogram		
$\therefore \Delta CBE \cong \Delta DAF$	S.A.S. congruent axiom		
\therefore area of (ΔCBE) = area of (ΔDAF)	congruent area axiom		
(3)	from (1), (2) and (3)		
Hence area of (parallelogram ABCD)			
= area of (parallelogram ABEF)			

Parallelograms on equal bases and having the same (or equal) altitude are equal in area.

Solution

Given

Parallelograms ABCD, EFGH are on the equal bases $\overline{\mathit{BC}}$ and $\overline{\mathit{FG}}$, having equal altitudes.

To Prove

area of (parallelogram ABCD) = area of (parallelogram EFGH)

Construction

Place the parallelograms ABCD and EFGH so that their equal bases $\overline{BC},\overline{FG}$ are in the straight line BCFG. Join \overline{BE} and \overline{CH} .

Proof

Statements	Reasons
The given gm ABCD and EFGH are	Their altitudes are equal (given)
between the same parallels	
Hence ADEH is a straight line ∥ to BC	
$\therefore m \overline{BC} = m \overline{FG}$	Given
	EFGH is a parallelogram

$= m \overline{EH}$ Now $m \overline{BC} = m \overline{EH}$ and they are \parallel $\therefore \overline{BE} \text{ and } \overline{CH} \text{are both equal and } \parallel$ Hence EBCH is a parallelogram Now $\parallel^{gm} ABCD = \parallel^{gm} EBCH (i)$	A quadrilateral with two opposite Being on the same base BC and between the same parallels Being on the same base same parallels
But gm EBCH = gm EFGH(ii) Hence, area (gm ABCD) = area (gm EFGH) same parallels	From (i) and (ii)

Triangles on the same base and of the same (i.e., equal) altitudes are equal in area.

Solution

Given

 Δs ABC, DBC on the same base \overline{BC} , and having equal altitudes.

To Prove

Area of (ΔABC) = Area of (ΔDBC)

Construction

Draw \overline{BM} || to \overline{CA} , \overline{CN} || to \overline{BD} meeting \overline{AD} produced in M, N.

Proof

Statements	Reasons	
ΔABC and ΔDEF are between the same $\parallel^{\rm gm}$	Their altitudes are equal	
Hence MADN is parallel to \overline{BC}		
∴ Area (gm BCAM) = Area (gm BCND)(i)	These $\ {}^{\mathrm{gm}}$ are on the same base \overline{BC} and between the same $\ {}^{\mathrm{s}}$	
But $\triangle ABC = \frac{1}{2} \parallel^{\text{gm}} \text{BCAM}$ (ii)	Each diagonal of a gm bisects it into two	

	congruent triangles
and ΔDEF = (Area of (gm EFYD)(iii)	
Hence,	
Area (ΔABC) = Area (ΔDBC)	From (i), (ii) and (iii)

Triangles on equal bases and of equal altitudes are equal in area.

Solution:

Given:

As ABC, DEF on equal bases \overline{BC} and \overline{EF} having altitudes equal.

To prove:

Area (ΔABC) = Area (ΔDEF)

Construction:

Place the Δs ABC and DEF so that their equal bases \overline{BC} and \overline{EF} are in the same straight line BCEF and their vertices on the same side of it. Draw \overline{BX} || to \overline{CA} and \overline{FY} || to \overline{ED} , meeting \overline{AD} produced in X, Y respectively.

Proof

Statements	Reasons	
ΔABC , ΔDEF are between the same parallels	Their altitudes are equal (given)	
∴ XADY is to BCEF		
∴ Area (gm BCAX) = Area (gm EFYD) (i)	These gm are on equal bases and between the same parallels Diagonal of a gm bisects it	

But
$$\Delta ABC = \frac{1}{2}$$
 (\parallel^{9m} BCAX) (ii) and $\Delta DEF = \frac{1}{2}$ (\parallel^{9m} EFYD) (iii) From (i), (ii) and (iii) \therefore Area (ΔABC) = Area (ΔDEF)

EXERCISE 16.1

Q1. Show that the line segment joining the mid points of opposite sides of a parallelogram divides it into two equal parallelograms.

Solution:

To prove:

Area of parallelogram ALMD = Area of parallelogram LBCM.

Proof:

 $\overline{AB} \parallel \overline{CD}$ opposite sides of parallelogram ABCD.

As L is midpoint of \overline{AB}

$$\overline{AL} \cong \overline{LB}$$

The parallelogram ALMD and LBCM are on equal bases ($\overline{AL}\cong\overline{LB}$) and between. The same parallel lines AB and DC.

They are equal areas

Hence Area of parallelogram ALMD = Area of parallelogram LBCM.

Q2. In a parallelogram ABCD, $m\overline{AB}$ = 10 cm. The altitudes. corresponding to sides AB and AD are respectively 7 cm and 8 cm. Find \overline{AD} .

Solution:

Mathematics

Given:

ABCD is a parallelogram.

 $m\overline{AB} = 10$ cm, \overline{DL} and \overline{BM} are altitudes

 $m\overline{DL} = 7$ cm, $m\overline{BM} = 8$ cm

To prove:

 $m\overline{AD} = ?$

Proof:

Area of a parallelogram = base ×altitude

Area of a parallelogram ABCD

$$m \, \overline{AB} \, \times m \, \overline{DL} \, = m \, \overline{AD} \, \times m \, \overline{BM}$$

 $10 \times 7 = \overline{mAD} \times 8$

$$m \overline{AD} = \frac{10 \times 7}{8} = \frac{35}{8} = 8.75 cm$$

Q3. If two parallelograms of equal areas have the same or equal bases, their altitudes are equal.

Solution

Given:

In a parallelogram ABCD, \overline{CQ} is altitude and in parallelogram LMNP, \overline{NP} is altitude. Areas of parallelogram ABCD = Area of parallelogram LMNP and m $\overline{AB} = m \, \overline{LM}$

2

Mathematics

To prove:

 $m\overline{CQ} = m\overline{NP}.$

Proof:

Area of a parallelogram ABCD = Area of parallelogram LMNP (Given)

We know that area of a parallelogram= base × altitude

 $m \overline{AB} \times m \overline{CQ} = m \overline{LM} \times m \overline{NP}$

but
$$m \overline{AB} = m \overline{LM}$$
 (Given)

$$m\,\overline{CQ}\,=m\,\overline{NP}$$

Page 3 / 3

EXERCISE 16.2

Q1. Show that a median of a triangle divides it into two triangles of equal area.

Solution:

Given

 $\ln \Delta ABC$, \overline{AM} is median

i.e. $m \overline{BM} = m \overline{MC}$

Construction:

To prove:

Area $\triangle ABM$ = Area $\triangle ACM$

Draw $\overline{PQ} \parallel \overline{BC}$, Draw $\overline{BS} \parallel \overline{AM}$ and $\overline{CT} \parallel \overline{AM}$

Proof:

 $\overline{BS} \parallel \overline{MA}$ (Construction)

 $\overline{BM} \parallel \overline{SA}$ (Construction)

: BMAS is a parallelogram.

Similarly, AMCT is also a parallelogram.

Parallelograms BMAS and they are between the same parallel lines \overline{BC} arid \overline{PQ} .

Mathematics

: They have equal areas.

So, Area parallelogram BMAS = Area parallelogram AMCT

 $\Rightarrow \frac{1}{2}$ (area parallelogram BMAS)

=> $\frac{1}{2}$ (area parallelogram AMCT)

Area $\triangle ABM$ = Area $\triangle AMC$

So, a median of a triangle divides it into two triangles of equal area.

Q2. Prove that a parallelogram is divided by its diagonals into four triangles of equal area.

Solution:

Given:

In parallelogram ABCD, \overline{AC} and \overline{BD} are its diagonal, which meet at L.

To prove:

Triangles ABL, BCL, CDL and ADL have equal area.

Proof:

Triangles ABC and ABD have the same base \overline{AB} and are between the same parallel lines \overline{AB} and \overline{DC} .

They have equal area,

or Area $\triangle ABC$ = Area $\triangle ABD$

or Area $\triangle ABL$ + Area $\triangle BCL$ ~ Area $\triangle ABL$ + Area $\triangle ADL$

=> Area $\triangle BCL=$ Area $\triangle ADL$

2

Mathematics

Area $\triangle BCL$ = Area $\triangle ABL$

Similarly, Area $\triangle ABC$ = Area $\triangle BCD$

Area ΔBCL = Area ΔCDL => Area $\triangle ABL$ - Area $\triangle CDL$

As diagonals of a parallelogram bisect each other,

L is midpoint of \overline{AC} .

(ii)

(iii)

So, \overline{BL} is a median of ΔABC

Area ΔBCL = Area ΔBCL

From (i), (ii) and (iii) we get Area $\triangle ABL$ - Area $\triangle BCL$ = Area $\triangle CDL$ = Area $\triangle ADL$

Solution:

Q3. Divide a triangle into six equal triangular parts.

Given: ΔABCD

Required: To divide AABC into six equal triangular parts.

Construction:

Mathematics

3

(ii) On \overline{BT} mark six points D; E; F; G; H and I such that $m \, \overline{BD} = m \, \overline{DE} - m \, \overline{EF} = m \, \overline{FG} = m \, \overline{GH} = m \, \overline{HI}$

(v) Join A to L, M, N, O and P. So, BAP, PAO, OAN, NAM, MAL and LAC are required six equal parts.

Page 4 / 4

(iv) Draw \overline{HL} , \overline{GM} , \overline{FN} , \overline{EO} , \overline{DP} each parallel to \overline{IC} .

(iii) Join IC.

(i) Draw the ray \overrightarrow{BT} making an acute angle CBT.

REVIEW EXERCISE 16

Q1. Which of the following are true and which are false?

- (i) Area of a figure means region enclosed by bounding lines of closed figure.
- (ii) Similar figures have same area.
- (iii) Congruent figures have same area.
- (iv) A diagonal of a parallelogram divides it into two non-congruent triangles.
- (v) Altitude of a triangle means perpendicular from vertex to the opposite side (base).
- (vi) Area of a parallelogram is equal to the product of base and height.

Answers:

(i) T	(ii) F	(iii) ⊺	(iv) F	(v) T	(vi) T
-------	--------	---------	--------	-------	--------

Q2. find the area of the following.

Solution:

- (i) Area = $6 \times 3 = 18 \text{ cm}^2$
- (ii) Area = $4 \times 4 = 16 \text{ cm}^2$

Mathematics

(iii) Area =
$$8 \times 4 = 32 \text{ cm}^2$$

(iv) Area =
$$\frac{1}{2} \times 10 \times 16 = 80 \text{ cm}^2$$

Q3. Define the following.

Solution:

(i) Area of a figure:

The region enclosed by the bounding lines of a closed figure is called the area of the figure.

The area of a closed region is expressed in square units (say Sq, m or m^2).

(ii) Triangular Region:

The interior of a triangle is the part of the plane, enclosed by the triangle.

A triangle region is the union of a triangle and its interior i.e., the three-line segment forming the triangle and its interior.

By area of a triangle, we mean the area of its triangular region.

(iii) Rectangular Region:

The interior of a rectangle is the part of the plane enclosed by the rectangle.

A rectangular region is the union of a rectangle and its interior.

A rectangular region can be divided into two or more than two triangular regions in many ways.

(iv) Altitude or Height of a triangle

If one side of a triangle is taken as its base the perpendicular to that side, from the opposite vertex is called altitude or height of the triangle.