Exercise 12.1

1. Prove that in a given cyclic quadrilateral, sum of opposite angles is two right angles and conversely.

Solution:

Given:

A quadrilateral ABCD.

In scribed in a circle whose centre is O.

To Prove:

 $\angle A + \angle C = 2\angle rts$.

And $\angle B + \angle D = 2 \angle rts$.

Construction:

Join A with O and O with C

Proof:

Arc ABC subtends ∠AOC at the centre O and. ∠ ADC at a point D on the remaining part of the circumference.

$$m\angle ADC = \frac{1}{2}\angle AOC$$
(i)

Mathematics

1

Similarly, arc ADC subtends reflex ∠AOC at the centre and ∠ABC on the circumferences.

$$M \angle ABC = \frac{1}{2} \angle AOC$$
(ii)

By Adding (i) & (ii)

$$M \angle ADC + M \angle ABC = \frac{1}{2} [M \angle AOC + M \angle AOC]$$

$$m\angle D + m\angle B = \frac{1}{2} [4\angle rts]$$

 $m\angle D + m\angle B = 2rt \angle S$. Proved. Similarly, by Joining B with O and O with D it can be proved that

 $\angle A + \angle C = 2\angle rts$.

Solution:

2. Show that paralleloaram inscribed in a circle will be a rectangle.

Given:

ABCD is a parallelogram inscribed in a circle with centre "O".

To Prove:

ABCD is a rectangle.

Proof

 $m \angle 1 + m \angle 3 = 180^{\circ}$

[cyclic quadrilateral]

But $m \ge 1 + m \ge 3 = 180^{\circ}$ [opp. \(\neglight)\) sof a parallelogram)

Mathematics

2

From (i) & (ii) we get

Hence, the parallelogram ABCD is a rectangle.

 $m \angle 1 = m \angle 2 = m \angle 3 = m \angle 4 = 90^{\circ}$.

BOC are equiangular. Solution:

3. AOB and COD are two intersecting chords of a circle. Show that Δ^s AOD and

Given:

Two chords AOB & COD

Intersecting each other at O.

Proof:

To Prove:

 $\triangle AOB$ and $\triangle COB$

Mathematics

3

∴∠AOB = ∠COB.

 $\angle 1 = \angle 2$.

 $\angle 3 = \angle 4$

(Vertical angles). \triangle AOD and \triangle COD are equiangular triangles.

[angles in the same segment of a circle].

Solution: Given:

4. \overline{AD} , and \overline{BC} are two parallel chords of a circle prove that arc \overline{AB} \cong arc

Two circles, C (O, r) and C (P, r) chord AB = chord CD.

 $\overline{\mathrm{CD}}$ and arc $\overline{\mathrm{AC}} \cong \mathrm{arc} \ \overline{\mathrm{BD}}$.

To Prove:

Construction: Join OA, OB and PC, PD.

In △AOB & △CPD

AB = ED

Proof:

Mathematics

∴ ∠AOB ≅ ∠CPD

 $OA \cong PC$

AB = CD

and OB \cong PD

 $\therefore \triangle AOB \cong \triangle CPD$ S.S.S.

There are the angles subtended by the AB and CD at the centre of equal circle AB = CD

[given]

[radii of equal circles]

5

Page 5 / 5

THEOREM 1

12.1 (i) The measure of a central angle of a minor arc of a circle, is double that of the angle subtended by the corresponding major arc.

Given:

AC is an arc of a circle with centre O.

Whereas ∠AOC is the central angle

and ∠ABC is circum angle.

To prove:

m∠AOC = 2m∠ABC

Construction:

Join B with O and produce it to meet the circle at D.

Write angles $\angle 1$ $^{\circ}$ $^{$

Proof

	Statements		Reasons
As	m∠1 = m∠3	(i)	Angles opposite to equal sides in △OAB
	$m \angle 2 = m \angle 4$ $m \angle 5 = m \angle 1 + m \angle 3$ $m \angle 6 = m \angle 2 + m \angle 4$	(ii) (iii) (iv)	Angles opposite to equal sides in $\triangle OBC$ External angle is the sum of internal opposite angles.
and	$m \angle 5 = m \angle 3 + m \angle 3 = 2m \angle 3$ $m \angle 6 = m \angle 4 + m \angle 4 = 2m \angle 4$ from figure		Using (i) and (iii) Using (ii) and (iv)
⇒m∠	5 + m∠6 = 2m∠3 + 2m∠4		Adding (v) and (vi)

1

Mathematics

$$\Rightarrow$$
 m \angle AOC = 2(m \angle 3 + m \angle 4) = 2m \angle ABC

Example:

The radius of a circle is $\sqrt{2}$ cm. A chord 2 cm in length divides the circle into two segments. Prove that the angle of large segment is 45°.

Given:

In a circle with centre O and radius mOA = mOB = $\sqrt{2}$ cm, The length of chord AB = 2 cm divides the circle into two segments with ACB as larger one.

To prove:

m∠ACB = 45°

Construction:

Join O with A and O with B.

Proof:

	Statements	Reasons
In ∆O	AB	
	$\left(\overline{OA}\right)^2 + \left(\overline{OB}\right)^2 = \left(\sqrt{2}\right)^2 + \left(\sqrt{2}\right)^2$ = 2 + 2 = 4	$m\overline{OA} = m\overline{OB} = \sqrt{2} cm$
	$= \left(2\right)^2 = \left(\overline{AB}\right)^2$	Given mAB = 2 cm
	$\triangle AOB$ is right angled triangle	
With	m∠AOB = 90°	Which being a central angle standing on an arc AB

2

Mathematics

Then $m\angle ACB = \frac{1}{2} m\angle AOB$	By theorem 1
$=\frac{1}{2}(90^{\circ})=45^{\circ}$	Circum angle is half of the central angle.

THEOREM 2

12.1 (ii) Any two angles in the same segment of a circle are equal.

Given:

∠ACB and ∠ADB are the circum angles in the same segment of a circle with centre O.

To prove:

 $m\angle ACB = m\angle ADB$

Construction:

Join O with A and O with B.

So that $\angle AOB$ is the central angle.

Proof:

Statements	Reasons
Standing on the same arc AB of a circle. ∠AOB is the central angle whereas ∠ACB and ∠ADB are circum angles m∠AOB = 2m∠ACB (i) and m∠AOB = 2m∠ADB (ii) ⇒ 2∠ACB = 2m∠ADB Hence, m∠ACB = m∠ADB	Construction Given By theorem 1 By theorem 1 Using (i) and (ii)

THEOREM 3

12.1 (iii) The angle

- in a semi-circle is a right angle,
- in a segment greater than a semi-circle is less than a right angle,
- in a segment less than a semi-circle is greater than a right angle;

Given:

AB is the chord corresponding to an arc ADB

Whereas ∠AOB is a central angle and ∠ACB is

a circum angle of a circle with centre O.

To prove:

- In fig. (I) If sector ACB is a semi-circle then $m\angle ACB = 1\angle rt$ In fig (II) If sector ACB is greater than a semi-circle then m∠ACB < 1∠rt
- In fig (III) If sector ACB is less than a semi-circle then $m\angle ACB > 1\angle rt$

Mathematics

1

Proof:

are equal.

Statements		Reasons
In each figure, \overline{AB} is the chord	of a circle	Given
with centre O.		
∠AOB is the central angle stand	ing on an	
arc ADB.		
Whereas ∠ACB is the circum and	gle	Given
Such that m∠AOB = 2m∠ACB	(i)	By theorem 1
Now in fig (I) m∠AOB = 180°		A straight angle
∴ m∠AOB = 2∠rt	(ii)	
⇒ m∠ACB = 1∠rt		Using (i) and (ii)
In fig (II) m∠AOB < 180°		
∴ m∠AOB < 2∠rt	(iii)	
⇒ m∠ACB <1∠rt		Using (i) and (iii)
In fig (III) m∠AOB > 180°		
∴ m∠AOB > 2∠rt	(iv)	
⇒ m∠ACB > 1∠rt		Using (i) and (iv)

Corollary 2. The angles in the same segment of a circle are congruent.

Corollary 1. The angles subtended by an arc at the circumference of a circle

Mathematics

2

Theorem 4

Reasons

Arc ADC of the circle with centre O.

Arc ABC of the circle with centre O.

12.1 (iv) The opposite angles of any quadrilateral inscribed in a circle are

To prove:

Given.

 $\int m\angle A + m\angle C = 2\angle rts$ $m\angle B + m\angle D = 2\angle rts$

Construction: Draw \overline{OA} and \overline{OC} .

Write $\angle 1$, $\angle 2$, $\angle 3$, $\angle 4$, $\angle 5$ and $\angle 6$ as shown in the figure.

central angle

supplementary.

Proof: Statements

Standing on the same arc ADC, ∠2 is a

Whereas ∠B is the circum angle

 $\therefore \qquad \mathsf{m} \angle \mathsf{B} = \frac{1}{2} \; (\mathsf{m} \angle 2) \qquad \mathsf{(i)}$

Standing on the same arc ABC, ∠4 is a

central angle whereas ∠D) is the circum

angle

Given:

To prove:

 $m\overline{AP} = m\overline{AQ}$

Construction:

mACB = mADB

 $m \angle 1 = m \angle 2$

 $m\overline{AQ} = m\overline{AP}$

 $m\overline{AP} = m\overline{AQ}$

Proof:

:

So,

Or

S	
Mathematics	
Watternatics	

By theorem 1

3

$m\angle D = \frac{1}{2} (m\angle 4)$ (ii)	By theorem 1
$rn \angle B + m \angle D = \frac{1}{2}m \angle 2 + \frac{1}{2}m \angle 4$	Adding (i) and (ii)
$=\frac{1}{2} (m \angle 2 + m \angle 4)$	
$=\frac{1}{2}$ (Total central angle)	
i.e., $m \angle B + m \angle D = \frac{1}{2} (4 \angle rt) = 2 \angle rt$	
Similarly, $m\angle A + m\angle C = 2\angle rt$	
Corollary 1. In equal circles or in the sam	e circle if two minor arcs are equal ther
angles inscribed by their corresponding	major arcs arc also equal.
Corollary 2. In equal circles or in the sam	e circle, two equal arcs subtend equal
angles at the circumference and vice ve	
Example 1:	
Two equal circles intersect in A and B. Th	rough B, a straight line is drawn to meet

Mathematics

Two equal circles cut each other at points A and B. A straight line PBQ drawn

through B meets the circles at P and Q respectively.

the circumferences at P and Q respectively. Prove that mAP = mAQ.

Reasons

Corresponding angles made by opposite

Sides opposite to equal angles in $\triangle APQ$.

Arcs about the common chord AB.

Example 2:	
ABCD is a quadrilateral circumscribed about a circle.	
	5
	Mathematics

arcs

So that each side becomes tangent to the circle. To prove: $m\overline{AB} + m\overline{CD} = m\overline{BC} + m\overline{DA}$

Show that $m\overline{\rm AB} + m\overline{\rm CD} = m\overline{\rm BC} + m\overline{\rm DA}$

ABCD is a quadrilateral circumscribed about a circle

Construction:

Given:

with centre O.

Drawn \overline{OE} \perp \overline{AB} , \overline{OF} \perp \overline{BC} , \overline{OG} \perp \overline{CD} and \overline{OH} \perp \overline{DA}

Statements	Keasons
$\therefore m\overline{AE} = m\overline{HA}$; $m\overline{EB} = m\overline{BF}$ (i)	Since tangents drawn from a point to the
$m\overline{CG} = m\overline{FC}$ and $m\overline{GD} = m\overline{DH}$ (ii)	circle are equal in length
$(m\overline{AE} + m\overline{EB}) + (m\overline{CG} + m\overline{GD})$	Adding (i) & (ii)
= $(m\overline{BF}+m\overline{FC})+(m\overline{DH}+m\overline{HA})$	
or $m\overline{AB} + m\overline{CD} = m\overline{BC} + m\overline{DA}$	

Page 6 / 6

MISCELLANEOUS EXERCISE 12

Q1. Multiple Choice Questions:

Four possible answers are given for the following question.

Tick (\checkmark) the correct answer.

same arc \overline{AB} . Then

(i) A circle passes through the vertices of a right angled \triangle ABC with mAC = 3 cm and mBC = 4 cm, $m \angle C$ = 90°. Radius of the circle is:

(a) 1.5 cm **(b)** 2.0 cm (d) 3.5 cm

(c) 2.5 cm

(ii) In the adjacent circular figure, central and inscribed angles stand on the

(a) $m \angle 1 = m \angle 2$ (c) $m \angle 2 = 3m \angle 1$ (d) $m \angle 2 = 2m \angle 1$

(a) $37\frac{1^{\circ}}{2}, 37\frac{1^{\circ}}{2}$

(iii) In the adjacent figure if $m \angle 3 = 75^{\circ}$, then find $m \angle 1$ and $m \angle 2$. **(b)** $37\frac{1^{\circ}}{2},75^{\circ}$

Mathematics

1

(c) $75^{\circ}, 37\frac{1^{\circ}}{2}$ (d) 75°,75°

(iv) Given that O is the centre of the circle. The angle marked x will be:

(d) 75°

(c) 50°

(a) $12\frac{1}{2}$

(a) $12\frac{1}{2}$

(c) 50°

(a) 32°

(c) 96°

(a) 55°

(c) 220°

(a) 15°

(c) 45°

(c) 100°

Answers:

(vi)

angle.

circlo.

vertices.

✓ The angle

supplementary.

(v) Given that O is the centre of the circle. The angle marked y will be:

Mathematics

2

(b) 25°

(d) 75°

Mathematics

3

(b) 30°

(d) 60°

(a) '5° **(b)** 30° (c) 45° (d) 60°

(x) In the figure, O is the centre of the circle then the angle x is:

(d) 125°

(iii)

(viii)

(a) 50° **(b)** 75°

(ii)

(vii)

(iv)

(ix)

(v)

 \checkmark The angle subtended by an arc at the centre of a circle is called is central

Mathematics

circumangle. ✓ A circumangle is subtended between any two chords of a circle, having common point on its circumference.

✓ A quadrilateral is called cyclic when a circle can be drawn through its four

Summary

✓ A central angle is subtended by two radii with the vertex at the centre of the

✓ The angle subtended by an arc of a circle at its circumference is called a

angle subtended by the corresponding major arc. ✓ Any two angles in the same segment of a circle are equal.

✓ The measure of a central angle of a minor arc of a circle, is double that of the

- in a segment greater than a semi-circle is less than a right angle. in a segment less than a semi-circle is greater than a right angle.

in a semi-circle is a right angle,

Page 6 / 6

✓ The opposite angles of any quadrilateral inscribed in a circle are

5

Mathematics