Exercise 9.1

1. Prove that, only the diameters of a circle are the intersecting chords which bisect each other.

Given: A circle having diameters \overline{AC} and

 $\overline{\mathrm{BD}}$ which passes through centre O.

To Prove: Diameters \overline{AC} and \overline{BD} bisect

each other.



Proof:

State	ements	Reasons	
$\overline{OA} \cong \overline{OC}$	(i)		
Similarly, $m \overline{OC} \cong \overline{0}$	OD (ii)	Common	
$m\overline{OA} = m\overline{OD}$	(iii)		
From (i), (ii) and (iii)	, we have	Radii of the same circle	
$m \overline{OA} = m \overline{OB} = m \overline{O}$	$\overline{OC} = \overline{OD}$		

Hence AC and BD are intersecting chords which bisect each other.

2. Two chords of a circle do not pass through the center. Prove that they cannot bisect each other.

Given:

Mathematics

A circle with center O having two

chords \overline{AB} and \overline{CD} .

To Prove:

M is not the mid-point of chords $\overline{\mathrm{AB}}$

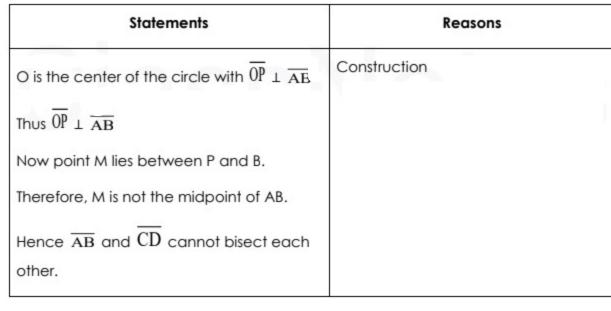
and \overline{CD} .

Construction:

Join O to P and Q such that $\overline{\text{OP}} \perp \overline{\text{AB}}$ and

 $\overline{OQ} \perp \overline{CD}$.

Proof:

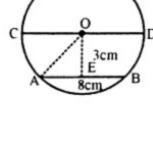


then measure the diameter of such circle.

3. If the length of the chord AB = 8 cm. Its distance from the center is 3 cm,

Given: mAB = 8cm, mOE = 3cm

Required:



Reasons

Mathematics

2

to find the length of diameter

i.e., mCD = ? Construction:

Join O to A and E.

Proof: Statements

In △ AEO	
$\left(AO\right)^2 = \overline{AE}^2 + \overline{EO}^2$	
$= \left[\frac{1}{2}\left(\overline{AB}\right)\right]^2 + \left(3\right)^2$	
$= \left[\frac{1}{2} \times 8\right]^2 + 9$	
$=(4)^2+9$	
=16+9=25cm	
$\Rightarrow \overline{AO} = \sqrt{25} = 5$ cm	
$\overline{\text{mAO}} = \overline{\text{mOC}} = \overline{\text{mOD}} = 5\text{cm}$	
$\Rightarrow \overline{CD} = \overline{CO} + m\overline{OD}$	
= 5cm + 5cm	

=10cm

Hence
$$\boxed{\mbox{Diameter} = 10cm}$$
 4. Calculate the length of a chord which stands at a distance 5cm from the

center of a circle whose radius is 9cm.

Statements

$m\overline{OA} = m\overline{OB} = 9cm$,

3

Required:

 $m \overline{AB} = ?$

 $m \overline{OD} = 5cm$

Given:

In \triangle OAD

 $m\overline{OA}^2 = m\overline{OD}^2 + m\overline{AD}^2$

$m\overline{OA}^2 - m\overline{OD}^2 = m\overline{AD}^2$	
$9^2 - 5^2 = \left[\frac{1}{2} m \left(\overline{AB}\right)\right]^2$	$\left[\because AD = \frac{1}{2} \overline{AB} \right]$
$\left[\frac{1}{2}m\left(\overline{AB}\right)\right]^2 = 81 - 25$	
$\frac{1}{4}m\left(\overline{AB}\right)^2 = 56$	
\Rightarrow m $\overline{AB}^2 = 56 \times 4 = 224$	
AB = 14.97cm	

Reasons

Mathematics

4

Page 4 / 4

Exercise 9.2

1. Two equal chords of a circle intersect, show that the segments of the one are equal corresponding to the segments of the other.

Given:

A circle with center "O". Two equal chords \overline{AB} and \overline{CD} (i.e. $m\overline{AB} = m\overline{CD}$) intersect each other at point E.

To Prove:

Construction:

 $m\overline{AE} = m\overline{ED}$ and $m\overline{EB} = m\overline{EC}$

Draw perpendiculars \overline{OL} and \overline{OM} from the center "O" to the chords \overline{AB} and \overline{CD} respectively. L and M are the midpoints of \overline{AB} and \overline{CD} respectively.

Proof:

Statements	Reasons
OLE ↔ ∆OME	
$\overline{L} \cong \overline{OM}$	Two equal chords of a circle are equidistant from the center.
ZOLE = MZOME=90°	$\overline{OL} \perp \overline{AB}$ and $\overline{OM} \perp \overline{CD}$
$\overline{OE} \cong m\overline{OE}$	Common side
OLE ≅ ∆OME	H.S ≅ H.S
	Statements $OLE \leftrightarrow \triangle OME$ $\overline{L} \cong \overline{OM}$ $\angle OLE = m\angle OME = 90^{\circ}$ $\overline{OE} \cong m\overline{OE}$ $OLE \cong \triangle OME$

Mathematics

$\overline{LE}\cong\overline{ME}\qquad \text{ (i)}$ Corresponding sides of congruent triangles $m\overline{AL}\!=\!\!\frac{1}{2}m\overline{AB}$ $m\overline{DM}\!=\!\frac{1}{2}m\overline{CD}$ $m\overline{AL}\!=\!\overline{DM}\qquad \ \text{(ii)}$ Both are half of equal chords. Adding (i) and (ii). $m\overline{AL} + m\overline{LE} = m\overline{DM} + m\overline{ME}$ $m\overline{AE} = m\overline{DE}$ (iii) Now, $m\overline{AB} = m\overline{CD}$ Given $m\overline{AE} + m\overline{EB} = m\overline{DE} + m\overline{EC}$ From (iii) $m\overline{AE} + m\overline{EB} = m\overline{AE} + m\overline{EC}$ By cancellation property. $m\overline{EB} = m\overline{EC}$

2. AB is the chord of a circle and the diameter CD is perpendicular bisector of AB . Prove that $m\overline{AC}$ = $m\overline{BC}$.

Given:

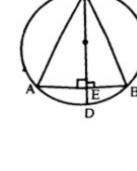
In a circle.

 $AB \perp CD$ and $AE \cong EB$

To Prove:

 $m\overline{AC} = m\overline{BC}$

Construction: Join C to A and B.



Reasons

Mathematics

2

Proof:

Statements

ΔACE ↔ ΔEBC	
$AE \cong EB$	A diameter CD \perp on chord AB bisect it.
m∠ AEC = m∠ CEB	Given
CE ≅ CE	Common side
AEC≅ □EBC	S.A.S ≅ S.A.S
$\overline{AC} \cong \overline{BC}$	Corresponding sides of congruent triangles.
$m\overline{AC} = m\overline{BC}$	mangios.
	$AE \cong EB$ $m \angle AEC = m \angle CEB$ $CE \cong CE$ $AEC \cong \Box EBC$ $\overline{AC} \cong \overline{BC}$

 \overline{AB} and \overline{CD} . 6 cm E Given:

3. As shown in the figure, find the distance between two parallel chords

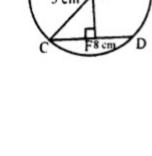
$m\overline{AB}$ = 6cm and $m\overline{CD}$ = 8cm

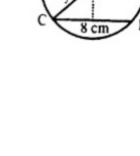
In \square OCF

 $m\overline{OC}^2 = \overline{OF}^2 + \overline{FC}^2$

 $m\overline{OC} = 5cm$ Required:

 $m\overline{EF} = ?$





Mathematics

3

In
$$\Box$$
 OAE
 $\overline{OA}^2 = \overline{OE}^2 + \overline{EA}^2$
 $5^2 = \overline{OE}^2 + 3^2$
 $\Rightarrow \overline{OE}^2 = 25 - 9 = 16$
 $\overline{OE} = \sqrt{16} = 4$
 $\therefore \overline{EF} = \overline{OE} + \overline{OF} = 4 + 3 = 7 \text{cm}$

 $5^2 = \overline{OF}^2 + 4^2$

 $\overline{OF} = \sqrt{9} = 3$ cm

 $\Rightarrow \overline{OF}^2 = 25 - 16 = 9$

Page 4 / 4

9.1 (i) One and only one circle can pass through three non-collinear points.

Given:

A, B and C are three non collinear points in a plane.

To prove:

One and only one circle can pass through three non-collinear points A, B and C.

Construction:

Join A with B and B with C. AB and BC are distinct and non collinear lines. Draw \overline{DF} \bot bisector to \overline{AB} and \overline{HK} \bot bisector to BC.

So \overline{DF} and \overline{HK} are not parallel rather they meet each other at some point O. Also join A, B and C with point O.

Proof:

Statements	Reasons
Every point on \overline{DF} is equidistant from A and B.	DF ± bisector to AB (construction)
In particular m \overline{OA} = m \overline{OB} (i)	By Locus Theorem
Similarly, every point on \overline{HK} is equidistant from to B and C.	HK is ⊥ bisector to BC (construction)
In particular m \overline{OB} = m \overline{OC} (ii)	By Locus theorem 1
Now O is the only point common to \overline{DF}	
and HK which is equidistant from A, B and C.	

Mathematics

i.e., mOA = mOB = mOC	Using (i) and (ii) '
However, there is no such other point expect O.	

Hence a circle with center O and radius \overline{OA} will pass through A, B and C. Ultimately there is only one circle which passes through three given points A, B and C.

Example:

Show that only one circle can be drawn to pass through the vertices of any rectangle.

Given:

ABCD is an inscribed rectangle w. r. t. a circle with center O.

To Prove:

Only one circle can be drawn through the vertices of the rectangle ABCD.

Construction: Diagonals AC and BD of the rectangle meet each other at point O.

Proof:

Statements	Reasons
ABCD is a rectangle.	Given
$m \overline{AC} = m \overline{BD}$ (i)	Diagonals of a rectangle are equal.
\overline{AC} and \overline{BD} meet each other at O	Construction
$\overline{OA} = \overline{OC}$ and $\overline{OB} = \overline{OD}$ (ii)	Diagonals of rectangle bisect each either
$\Rightarrow \overline{OA} = \overline{OB} = \overline{OC} = \overline{OD}$ (iii)	Using (i) and (ii)

2

i.e., point O is equidistant from all
vertices of the rectangle ABCD.
Hence \overline{OA} , \overline{OB} , \overline{OC} , and \overline{OD} are the radii of the same circle with center O.

A straight line, drawn from the center of a circle to bisect a chord (which is not a diameter) is perpendicular to the chord.

Given:

M is the mid-point of any chord \overline{AB} of a circle with center at O.

Where chord \overline{AB} is not the diameter of the circle.

To prove:

 \overline{OM} \perp the chord \overline{AB}

Construction:

Join A and B with center O.

Write $\angle 1$ and $\angle 2$ as shown in the Figure.

Proof:

Statements	Reasons
In △OAM ↔ △OBM	
$m \overline{OA} = m \overline{OB}$	Radii of the same circle
$m \overline{AM} = m \overline{BM}$	Given
$m \overline{OM} = m \overline{OM}$	Common
$\triangle OAM \cong \triangle OBM$	S.S.S ≅ S.S.S
\Rightarrow m \angle 1 = m \angle 2 (i)	Corresponding angles of congruent triangles
i.e., $m \angle 1 + m \angle 2 = m \angle AMB = 180^{\circ}$ (ii)	Adjacent supplementary angles
m∠1 = m∠2 = 90°	From (i) and (ii)

i.e., $\overline{OM} \perp \overline{AB}$	

9.1 (iii) Perpendicular from the center of a circle on a chord bisects it.

Given:

 \overline{AB} is the chord of a circle with center at O so that \overline{OM} \perp chord \overline{AB}

To prove:

M is the midpoint of chord \overline{AB}

i.e.,
$$m\overline{AM} = m\overline{BM}$$

Construction:

Join A and B with center O.

Proof:

Reasons
Given
Radii of the same circle
Common
In ∠rt △s H.S ≅ H.S
Corresponding sides of congruent
triangels

Corollary 1: \bot bisector of the chord of a circle passes through the center of a circle.

920

Mathematics

Corollary 2: The diameter of a circle passes through the mid points of two parallel chords of a circle.

Example:

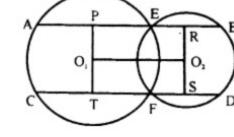
Parallel lines passing through the points of in intercepted by them are equal.

Given:

Two circles have centers O_1 and O_2 .

They intersect each other at points E and F.

Line segment \overline{AB} || Line segment \overline{CD}



To Prove:

 $m\overline{AB} = m\overline{CD}$

Construction:

Draw PT and RS \perp both AB and CD and join the centers O_1 and O_2 .

Proof:

Statements	Reasons
PRST is a rectangle.	Construction
$m \overline{PR} = m \overline{TS}$ (i)	
Now $m \overline{PR} = m \overline{PE} + m \overline{ER}$	
$= \frac{1}{2} m \overline{AE} + \frac{1}{2} m \overline{EB}$	By Theorem 3
$=\frac{1}{2}\Big(m\overline{AE}+m\overline{EB}\Big)$	
$m\overline{PR} = \frac{1}{2} (m\overline{AB})$ (ii)	$m\overline{AE} + m\overline{EB} = m\overline{AB}$

2

Simila	rly, m TS = $\frac{1}{2}$ mCD	(iii)	
⇒	$\frac{1}{2}m\overline{AB} = \frac{1}{2}m\overline{CD}$		Using (i), (ii) and (iii)
i.e.,	$m\overline{AB} = m\overline{CD}$		

9.1 (iv) If two chords of a circle are congruent then they will be equidistant from the center.

Given:

 \overline{AB} and \overline{CD} are two equal chords of a circle with center at O. So that $\overline{OH} \perp \overline{AB}$ and $\overline{UK} \perp \overline{CD}$.

Н

To prove:

 $m\overline{OH} = m\overline{OK}$

Construction:

Join O with A and O with C. So that we have $\angle rt \ \Delta^s$ OAH and OCK.

Proof:

Statements	Reasons
OH bisects chord AB	$\overline{\mathrm{OH}}$ \perp $\overline{\mathrm{AB}}$ (By Theorem 3)
i.e., $m\overline{AH} = \frac{1}{2}m\overline{AB}$ (i)	
Similarly, \overline{OK} bisects chord \overline{CD}	$\overline{OK} \perp \overline{CD}$ (By Theorem 3)
i.e., $m\overline{CK} = \frac{1}{2}m\overline{CD}$ (ii)	
But $m\overline{AB} = m\overline{CD}$ (iii)	Given
Hence, $m\overline{AH} = m\overline{CK}$ (iv)	Using (i),(ii) and (iii)
Now in $\angle rt \triangle s OAH \leftrightarrow OCK$	Given \overline{OH} \perp \overline{AB} and \overline{OK} \perp \overline{CD}
hyp \overline{OA} = hyp \overline{OC}	Radii of the same circle

1

$\overline{mAH} = m\overline{CK}$	Already proved in (iv)
□OAH ≅ □OCK	H.S postulate
$\Rightarrow m\overline{OH} = m\overline{OK}$	

9.1 (v) Two chords of a circle which are equidistant from the center, are congruent.

Given:

 \overline{AB} and \overline{CD} are two chords of a circle with center at O.

 $\overline{OH} \perp \overline{AB}$ and $\overline{OK} \perp \overline{CD}$, so that $m\overline{OH} = m\overline{OK}$

To prove:

 $m\overline{AB} = m\overline{CD}$

Construction:

Join A and C with O. So that we can form \angle rt \triangle s OAH and OCK.

Proof:

Statements	neasons		
In $\angle rt \triangle^s OAH \leftrightarrow OCK$			
hyp \overline{OA} = hyp \overline{OC}	Radii of the same circle		
$m\overline{OH} = m\overline{OK}$	Given		
□OAH ≅ □OCK	H.S postulate		
So $m\overline{AH} = m\overline{CK}$ (i)	Corresponding sides of congruent triangls		
But $m\overline{AH} = \frac{1}{2}m\overline{AB}$ (ii)	OH ⊥ AB (Given)		
Similarly, $m\overline{CK} = \frac{1}{2}m\overline{CD}$ (iii)	$\overline{OK} \perp \overline{CD}$ (Given)		
Since $m\overline{AH} = m\overline{CK}$	Already proved in (i) Using (ii) and (iii)		

Mathematics

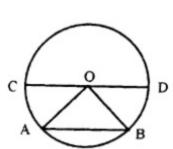
$$\frac{1}{2}m\overline{AB} = \frac{1}{2}m\overline{CD}$$
 Or $m\overline{AB} = m\overline{CD}$

Example:

Prove that the largest chord in a circle is the diameter.

Given:

 \overline{AB} is a chord and \overline{CD} is the diameter of a circle with center point O.



To prove:

If \overline{AB} and \overline{CD} are distinct, then $m\overline{CD} > m\overline{AB}$.

Construction:

Join O with A and O with B then form a $\triangle OAB$.

Proof:

Sum of two sides of a triangle is greater than its third side.

$$\ln \triangle OAB \Rightarrow m\overline{OA} + m\overline{OB} > m\overline{AB}$$
 ...(i)

But \overline{OA} and \overline{OB} are the radii of the same circle with center O.

So that
$$m\overline{OA} + m\overline{OB} = m\overline{CD}$$
 ...(ii)

 \Rightarrow Diameter \overline{CD} > chord \overline{AB} using (i) & (ii).

Hence, diameter CD is greater than any other chord drawn in the circle.

Miscellaneous Exercise 9

Q1. Multiple Choice Questions:

Four possible answers are given for the following questions.

Tick (\checkmark) the correct answer.

(i) In the circular figure, ADB is called

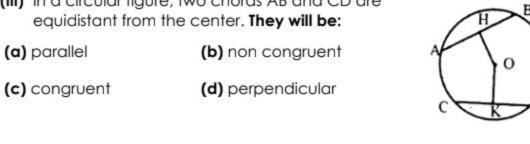
(a) an arc (b) a secant (c) a chord (d) a diameter

(ii) In the circular figure, ACB is called (a) an arc (b) a secant (d) a diameter (c) a chord

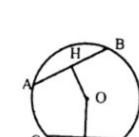
(iii)In the circular figure, AOB is called

(a) an arc (b) a secant (c) a chord (d) a diameter

(iii) In a circular figure, two chords AB and CD are equidistant from the center. They will be:



(b) double of the diameter



Mathematics

1

(a) all equal

called

(v) Radii of a circle are

(c) all unequal (d) half of any chord

(b) diameter (a) radius (c) circumference (d) secant

(vi) A chord passing through the center of a circle is called:

(vii) Right bisector of the chord of a circle always passes through the

(a) radius (b) circumference

(c) center (d) diameter (viii) The circular region bounded by two radii and the corresponding arc is

(a) circumference of a circle (b) sector of a circle (c) diameter of a circle (d) segment of a circle

(ix) The distance of any point of the circle to its center is called (a) radius (b) diameter (c) a chord (d) an arc

(a) circumference (b) diameter

(x) Line segment joining any point of the circle to the center is called

Mathematics

2

(xi) Locus of a point in a plane equidistant from a fixed point is called

(c) radial segment

(a) ∠

(c) 270 degrees

(c) three

(vi)

(a) radius (b) circle (d) diameter (c) circumference

(b) △

(d) 360 degrees

(d) perimeter

(xii) The symbol for a triangle is denoted by

(c) ⊥ (d) ⊙

(xiii) A complete circle is divided into (a) 90 degrees (b) 180 degrees

(xiv) Through how many non collinear points, a circle can pass? (a) one (b) two

(d) none

(viii)

(xiii)

Answers: (ii) (iii)

(i) A circle and a circumference.

Ans: Circle and circumference

(vii)

(xii)

(xi)

Mathematics

3

(v)

(x)

(iv)

(ix)

(xiv)

always equidistant from some fixed-point O. The fixed-point O not lying on the circle is called the center. Whereas the boundary traced by moving point P is called circumference of the circle.

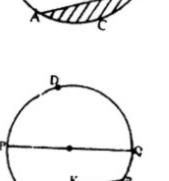
A circle is the locus of a moving point P in a plane which is

Q2. Differentiate between the following terms and illustrate them by diagrams.

(ii) A chord and the diameter of a circle.

points on the circumference of a circle. Whereas diameter POQ is the chord passing through the center a circle. (iii) A chord and an arc of a circle.

A chord AKB of a circle is a straight line joining any two



joining any two points on the circumference of a circle. (iv) Minor arc and major arc of a circle.

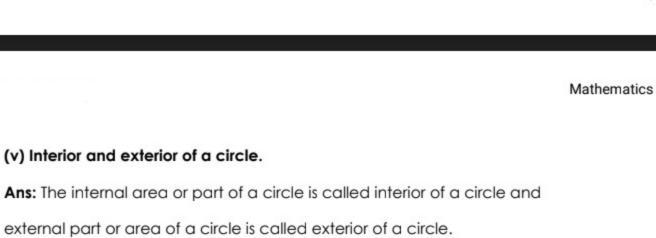
Ans: An arc ACB of a circle is any portion of its

circumference. A chord AKB of a circle is a straight line

Ans: Chord and the diameter of a circle

ADB is major arc of a circle.

Ans: If the above figure, the smaller arc ACB is minor arc,



Ans: A sector of a circle is the center in the plane figure bounded by two radii and the intercepted between them. Any pair of radii divides a circle into two

(v) Interior and exterior of a circle.

(vi) A sector and a segment of a circle.

Summary

✓ $2\pi r$ is the circumference of a circle with radius r.

not a diameter) is perpendicular to the chord.

center.

Major

Segment

sectors. Segments is the portion of a circle bounded by an arc and a

corresponding chord. Any chord divides a circle into two segments.

Major

Major

Segment

 $\checkmark \pi r^2$ is the area of a circle with radius r. ✓ Three or more points lying on the same line are called collinear points otherwise they are non-collinear points.

whereas \bot bisectors of sides of the triangle provides the center.

✓ One and only one circle can pass through three non-collinear points.

✓ A straight line, drawn from the center of a circle to bisect a chord (which is

✓ If two chords of a circle are congruent, then they will be equidistant from the

✓ The circle passing through the vertices of a triangle is called its circumcircle.

Mathematics

5

✓ Two chords of a circle which are equidistant from the center are congruent.

✓ Perpendicular from the center of a circle on a chord bisects it.

Page 6 / 6